Ein neues Cluster-Tool für EMIL

Ein Cluster-Tool zur Erforschung neuer Materialien und  Bauteilstrukturen für Photovoltaik- und Photokatalyse-Anwendungen. (Bildquelle: Altatech)

Ein Cluster-Tool zur Erforschung neuer Materialien und  Bauteilstrukturen für Photovoltaik- und Photokatalyse-Anwendungen. (Bildquelle: Altatech)

Das Helmholtz-Zentrum Berlin für Materialien und Energie (HZB) und Altatech, ein Unternehmen der Soitec-Gruppe, haben eine Kooperation vereinbart, um neue Materialien für die nächste Generation von hocheffizienten Solarenergiewandlern zu erforschen und zu entwickeln. Dazu gehören insbesondere neue Materialien und innovative Bauteilstrukturen für Photovoltaik- und Photokatalyse-Anwendungen.

Im Rahmen der gemeinsamen Forschungsarbeiten wird Altatech ein speziell angepasstes Silizium-Depositionsclustertool auf Basis seiner sogenannten AltaCVD-Plattform im „Energy Materials In-situ Laboratory (EMIL)” des HZB installieren. Dort – direkt am Berliner Elektronen-Synchrotron BESSY des HZB – wollen das Helmholtz-Zentrum und Altatech gemeinsam neue Materialabscheidungsprozesse, funktionelle Grenzflächen und Bauteile für die Solarenergieumwandlung und -speicherung entwickeln.

Altatechs AltaCVD-System wird in EMIL zum Einsatz kommen, um unter anderem verschiedene Morphologien und Legierungen von Silizium, sowie transparente, leitende Oxide und ultradünne Dielektrika abzuscheiden. Diese Stoffklassen werden bei der Herstellung der nächsten Generation von Solarenergie-Baugruppen eine wichtige Rolle spielen. Das Clustersystem soll im EMIL-Gebäude installiert und dort direkt mit einer Röntgenanalyse-Messstation verbunden werden, die von einer BESSY II-Beamline mit hochbrilliantem Röntgenlicht versorgt wird.

HZB und Altatech wollen im Cluster-Tool Depositionstechniken auf Basis von Atomlagen-Abscheidung, Plasma-unterstützter chemischer Gasphasenabscheidung sowie Kathodenzerstäubung auf Substrate anwenden, die in der Größe von kleinsten Proben bis hin zu industriekompatiblen 6-Inch-Wafern reichen. EMILs weltweit einmalige Analysetechniken sollen dann genutzt werden, um Material- und Baugruppeneigenschaften direkt während bzw. zwischen verschiedenen Schritten des Herstellungsprozesses zu analysieren.

„Mit EMIL wollen wir Materialien für neue Hocheffizienz-Photovoltaikzellen und für katalytische Prozesse erforschen, die für zukünftige Solarenergieumwandlungs- und -speicherkonzepte erforderlich sind“, sagt Prof. Dr. Klaus Lips, EMIL-Projektleiter und Chef der „Advanced Analytics“-Gruppe am HZB: „Wir werden diese Materialien mit Methoden der Grundlagenforschung entwickeln und charakterisieren, diese jedoch mit industrietauglichen Verfahren herstellen, um anschließend eine schnelle industrielle Umsetzung möglich zu machen. Das AltaCVD-System ermöglicht es, sehr flexible Präparationsbedingungen mit einer vollständig industriekompatiblen Abscheidungstechnologie zu realisieren. Das gilt für Temperaturen, Prekursoren oder in-situ plasmachemische Reinigung.”

„Diese Kooperation verstärkt die technologische Führungsrolle des AltaCVD-Systems im Bereich Abscheidungstechniken für Hochtechnologie-Materialien“, sagt Jean-Luc Delcarri, Generalmanager von Soitecs Altatech-Gruppe: „Unsere Zusammenarbeit mit dem HZB ermöglicht es uns, diese Technologie an einem führenden Synchrotron einzusetzen. Gemeinsam mit dem HZB werden wir die Tür öffnen zu neuen Möglichkeiten in der Erforschung von Energiematerialien. So können wir einen Beitrag leisten, dass Wissenschaftler die Herausforderungen der zukünftigen weltweiten Energieversorgung angehen können.“

  • Link kopieren

Das könnte Sie auch interessieren

  • Faszinierendes Fundstück wird zu wertvoller Wissensquelle
    Nachricht
    12.02.2026
    Faszinierendes Fundstück wird zu wertvoller Wissensquelle
    Das Bayerische Landesamt für Denkmalpflege (BLfD) hat ein besonderes Fundstück aus der mittleren Bronzezeit nach Berlin geschickt, um es mit modernsten Methoden zerstörungsfrei zu untersuchen: Es handelt sich um ein mehr als 3400 Jahre altes Bronzeschwert, das 2023 im schwäbischen Nördlingen bei archäologischen Grabungen zutage trat. Die Expertinnen und Experten konnten herausfinden, wie Griff und Klinge miteinander verbunden sind und wie die seltenen und gut erhaltenen Verzierungen am Knauf angefertigt wurden – und sich so den Handwerkstechniken im Süddeutschland der Bronzezeit annähern. Zum Einsatz kamen eine 3D-Computertomographie und Röntgendiffraktion zur Eigenspannungsanalyse am Helmholtz-Zentrum Berlin (HZB) sowie die Röntgenfluoreszenz-Spektroskopie bei einem von der Bundesanstalt für Materialforschung und -prüfung (BAM) betreuten Strahlrohr an BESSY II.
  • Topologische Überraschungen beim Element Kobalt
    Science Highlight
    11.02.2026
    Topologische Überraschungen beim Element Kobalt
    Das Element Kobalt gilt als typischer Ferromagnet ohne weitere Geheimnisse. Ein internationales Team unter der Leitung von Dr. Jaime Sánchez-Barriga (HZB) hat nun jedoch komplexe topologische Merkmale in der elektronischen Struktur von Kobalt entdeckt. Spin-aufgelöste Messungen der Bandstruktur (Spin-ARPES) an BESSY II zeigten verschränkte Energiebänder, die sich selbst bei Raumtemperatur entlang ausgedehnter Pfade in bestimmten kristallographischen Richtungen kreuzen. Dadurch kann Kobalt als hochgradig abstimmbare und unerwartet reichhaltige topologische Plattform verstanden werden. Dies eröffnet Perspektiven, um magnetische topologische Zustände in Kobalt für künftige Informationstechnologien zu nutzen.
  • MXene als Energiespeicher: Vielseitiger als gedacht
    Science Highlight
    03.02.2026
    MXene als Energiespeicher: Vielseitiger als gedacht
    MXene-Materialien könnten sich für eine neue Technologie eignen, um elektrische Ladungen zu speichern. Die Ladungsspeicherung war jedoch bislang in MXenen nicht vollständig verstanden. Ein Team am HZB hat erstmals einzelne MXene-Flocken untersucht, um diese Prozesse im Detail aufzuklären. Mit dem in situ-Röntgenmikroskop „MYSTIIC” an BESSY II gelang es ihnen, die chemischen Zustände von Titanatomen auf den Oberflächen der MXene-Flocken zu kartieren. Die Ergebnisse zeigen, dass es zwei unterschiedliche Redox-Reaktionen gibt, die vom jeweils verwendeten Elektrolyten abhängen. Die Studie schafft eine Grundlage für die Optimierung von MXene-Materialien als pseudokapazitive Energiespeicher.