Herbstschule zur Charakterisierung und Modellierung von Dünnschicht-Solarzellen

Schöner Tagungsort für gute Wissenschaft: Die Herbstschule in Schwielow führt junge Wissenschaftler in Themen rund um die Dünnschichtphotovoltaik ein.

Schöner Tagungsort für gute Wissenschaft: Die Herbstschule in Schwielow führt junge Wissenschaftler in Themen rund um die Dünnschichtphotovoltaik ein.

Vom 2.  bis 7. November 2014 veranstaltet das Helmholtz-Virtuelle Institut  "Microstructure Control for Thin‐Film Solar Cells" eine Herbstschule rund um die Dünnschichtphotovoltaik-Forschung. Die Herbstschule findet im Resort Hotel Schwielowsee in der Nähe von Potsdam statt und richtet sich insbesondere an junge Wissenschaftlerinnen und Wissenschaftler.

Weitere Informationen finden Sie hier:

Kontakt: autumn.school@helmholtz-berlin.de

In research and development of solar cells, the issue of microstructure and its impact on the device performance is often regarded inadequately, mostly because of insufficient knowledge about analysis and simulation methods. Apart from the microstructural properties of completed thin films in semiconductor devices, it is also of concern how the microstructure develops during growth.

The school aims at giving insight into various techniques for microstructural analysis as well as simulation methods of the growth of crystalline materials apart from a session on electricalmaterials and device characterization. Each session will comprise a keynote lecture of an expert in the corresponding field, followed by a 2‐3 hours hands‐on tutorial, giving the participants the possibility to get deeper into the topic, with the help of a specific question to be solved in teamwork practices.

Two poster sessions are also planned as evening events, which intensify the discussions and scientific exchange between experts and participants.



red

  • Link kopieren

Das könnte Sie auch interessieren

  • Poröse organische Struktur verbessert Lithium-Schwefel-Batterien
    Science Highlight
    15.09.2025
    Poröse organische Struktur verbessert Lithium-Schwefel-Batterien
    Ein neu entwickeltes Material kann die Kapazität und Stabilität von Lithium-Schwefel-Batterien deutlich verbessern. Es basiert auf Polymeren, die ein Gerüst mit offenen Poren bilden. In der Fachsprache werden sie radikale kationische kovalente organische Gerüste oder COFs genannt. In den Poren finden katalytisch beschleunigte Reaktionen statt, die Polysulfide einfangen, die ansonsten die Lebensdauer der Batterie verkürzen würden. Einige der experimentellen Analysen wurden an der BAMline an BESSY II durchgeführt. Prof. Yan Lu, HZB, und Prof. Arne Thomas, Technische Universität Berlin, haben diese Arbeit gemeinsam vorangetrieben.
  • Metalloxide: Wie Lichtpulse Elektronen in Bewegung setzen
    Science Highlight
    08.09.2025
    Metalloxide: Wie Lichtpulse Elektronen in Bewegung setzen
    Metalloxide kommen in der Natur reichlich vor und spielen eine zentrale Rolle in Technologien wie der Photokatalyse und der Photovoltaik. In den meisten Metalloxiden ist jedoch aufgrund der starken Abstoßung zwischen Elektronen benachbarter Metallatome die elektrische Leitfähigkeit sehr gering. Ein Team am HZB hat nun zusammen mit Partnerinstitutionen gezeigt, dass Lichtimpulse diese Abstoßungskräfte vorübergehend schwächen können. Dadurch sinkt die Energie, die für die Elektronenbeweglichkeit erforderlich ist, so dass ein metallähnliches Verhalten entsteht. Diese Entdeckung bietet eine neue Möglichkeit, Materialeigenschaften mit Licht zu manipulieren, und birgt ein hohes Potenzial für effizientere lichtbasierte Bauelemente.
  • Lithium-Schwefel-Batterien mit wenig Elektrolyt: Problemzonen identifiziert
    Science Highlight
    12.08.2025
    Lithium-Schwefel-Batterien mit wenig Elektrolyt: Problemzonen identifiziert
    Mit einer zerstörungsfreien Methode hat ein Team am HZB erstmals Lithium-Schwefel-Batterien im praktischen Pouchzellenformat untersucht, die mit besonders wenig Elektrolyt-Flüssigkeit auskommen. Mit operando Neutronentomographie konnten sie in Echtzeit visualisieren, wie sich der flüssige Elektrolyt während des Ladens und Entladens über mehrere Schichten verteilt und die Elektroden benetzt. Diese Erkenntnisse liefern wertvolle Einblicke in die Mechanismen, die zum Versagen der Batterie führen können, und sind hilfreich für die Entwicklung kompakter Li-S-Batterien mit hoher Energiedichte.