Warum “altern” Lithium-Ionen Akkus?

Ursprünglich besitzt das Kathodenmaterial eine ABCABC-Struktur (links). Im Lauf mehrerer Ladezyklen wird diese Ordnung "abgebaut" zu  ABBCCA (rechts).

Ursprünglich besitzt das Kathodenmaterial eine ABCABC-Struktur (links). Im Lauf mehrerer Ladezyklen wird diese Ordnung "abgebaut" zu  ABBCCA (rechts).

Selbst die besten Akkus werden mit der Zeit schlechter. Warum dies so ist, hat nun erstmals ein HZB-Team direkt an BESSY II und DORIS beobachten können. Sie untersuchten dafür ein Kathodenmaterial, für Lithium-Ionen-Akkus der nächsten Generation. Dabei zeigte sich, dass die elektrochemischen Prozesse beim Laden zu Scherungen in den Sauerstofflagen führen. Diese Scherungen werden beim Entladen nicht komplett rückgängig gemacht, so dass die ursprünglich regelmäßige, kristalline Struktur im Lauf mehrerer Zyklen immer ungeordneter wird. Dies ist ein Hauptgrund dafür, dass Lithium-Ionen-Akkus im Lauf der Zeit „altern“.

“Wieder aufladbare Lithium-Ionen-Akkus liefern Strom für Handys, Laptops, Kameras und werden allmählich auch für die Automobil-Industrie interessant”, sagt Dr. Jatinkumar Rana vom HZB. Der junge Wissenschaftler und seine Kollegen haben mit der Gruppe um Prof. Dr. Martin Winter von der Universität Münster Lithium-reiche Kathodenmaterialien untersucht, die durch die Summenformel (x)Li2MnO3*(1-x)LiMO2 beschrieben werden. Dabei steht „M“ für ein Übergangsmetall wie Mangan, Chrom oder Eisen. Solche Kathodenmaterialien gelten als beste Kandidaten für die nächste Generation von Lithium-Ionen-Akkus. “Sie besitzen im Vergleich zu kommerziellen Kathodenmaterialien eine doppelt so hohe Kapazität und eine hohe Ladegeschwindigkeit. Außerdem enthalten sie weniger seltene und toxische Elemente wie Nickel oder Kobalt, was sie billiger und umweltfreundlicher macht“, sagt Rana.

Doch zu diesen positiven Eigenschaften kommen leider auch unerwünschte Effekte wie das Nachlassen der Batteriespannung im Lauf mehrerer Zyklen, so wie bei herkömmlichen Akkus auch. Außerdem ist nicht ausreichend bekannt, welche Rolle die Li2MnO3-Komponente bei den elektrochemischen Prozessen überhaupt spielt. “Um diese Fragen zu klären, haben wir untersucht, wie die elektrochemischen Prozesse beim Laden und Entladen die atomare Struktur der Li2MnO3-Komponente verändern”, berichtet Rana.

Die Wissenschaftler untersuchten Proben von Li2MnO3 während des ersten und des 33. Ladezyklus mit Röntgen-Absorptions-Spektroskopie (XAS) an den Synchrotronquellen BESSY II am HZB und DORIS am DESY. Dabei konnten sie beobachten, was beim Aufladen passierte: Beim ersten Aufladen wanderten Sauerstoffatome aus der Probe ab, außerdem führte bei jedem Ladeprozess der Austausch von Lithium- und Wasserstoff-Ionen zu einer Scherung in den Sauerstoff-Schichten; Damit konnten sie erstmals experimentell eine Vermutung bestätigen, die in Fachkreisen bereits länger diskutiert wurde: Das Material verliert mit der Zeit die ursprüngliche kristalline Struktur und die elektrochemische Leistung der Batterie wird schlechter.

Die Ergebnisse liefern nun jedoch auch konkrete Hinweise auf die entscheidenden elektrochemischen Prozesse in Lithium-reichen Kathodenmaterialien. „Eine Reihe dieser Materialien, die wir bisher untersuchen konnten, zeigt ähnliche strukturelle Veränderungen wie Li2MnO3. Aber inzwischen verstehen wir die elektrochemischen Prozesse besser, so dass wir in Zukunft die Leistung gezielt verbessern können”, hofft Rana.

Jatinkumar Rana et al.  “Structural Changes in Li2MnO3 Cathode Material for Li-Ion Batteries”, Advanced Energy Materials,  DOI: 10.1002/aenm.201300998

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Gute Aussichten für Zinn-Perowskit-Solarzellen
    Science Highlight
    03.12.2025
    Gute Aussichten für Zinn-Perowskit-Solarzellen
    Perowskit-Solarzellen gelten weithin als die Photovoltaik-Technologie der nächsten Generation. Allerdings sind Perowskit-Halbleiter langfristig noch nicht stabil genug für den breiten kommerziellen Einsatz. Ein Grund dafür sind wandernde Ionen, die mit der Zeit dazu führen, dass das Halbleitermaterial degradiert. Ein Team des HZB und der Universität Potsdam hat nun die Ionendichte in vier verschiedenen Perowskit-Halbleitern untersucht und dabei erhebliche Unterschiede festgestellt. Eine besonders geringe Ionendichte wiesen Zinn-Perowskit-Halbleiter auf, die mit einem alternativen Lösungsmittel hergestellt wurden – hier betrug die Ionendichte nur ein Zehntel im Vergleich zu Blei-Perowskit-Halbleitern. Damit könnten Perowskite auf Zinnbasis ein besonders großes Potenzial zur Herstellung von umweltfreundlichen und besonders stabilen Solarzellen besitzen.
  • Synchrotronstrahlungsquellen: Werkzeugkästen für Quantentechnologien
    Science Highlight
    01.12.2025
    Synchrotronstrahlungsquellen: Werkzeugkästen für Quantentechnologien
    Synchrotronstrahlungsquellen erzeugen hochbrillante Lichtpulse, von Infrarot bis zu harter Röntgenstrahlung, mit denen sich tiefe Einblicke in komplexe Materialien gewinnen lassen. Ein internationales Team hat nun im Fachjournal Advanced Functional Materials einen Überblick über Synchrotronmethoden für die Weiterentwicklung von Quantentechnologien veröffentlicht: Anhand konkreter Beispiele zeigen sie, wie diese einzigartigen Werkzeuge dazu beitragen können, das Potenzial von Quantentechnologien wie z. B. Quantencomputing zu erschließen, Produktionsbarrieren zu überwinden und den Weg für zukünftige Durchbrüche zu ebnen.
  • Gemeinsames Energie- und Klimalabor in Kyjiw nimmt Betrieb auf
    Nachricht
    28.11.2025
    Gemeinsames Energie- und Klimalabor in Kyjiw nimmt Betrieb auf
    Das Helmholtz-Zentrum Berlin und die Nationale Universität Kyjiw-Mohyla-Akademie haben am 27. November ein gemeinsames Energie- und Klimalabor gegründet.