Künstliches Mottenauge als Lichtfänger

Rasterelektronenmikroskopie der Oberfläche vor der Pyrolyse (a) und nach der Pyrolyse (b und c).

Rasterelektronenmikroskopie der Oberfläche vor der Pyrolyse (a) und nach der Pyrolyse (b und c). © EMPA

Forscher der EMPA bei Zürich und der Universität Basel haben an BESSY II eine photoelektrochemische Zelle untersucht, deren Oberfläche ähnlich wie ein Mottenauge strukturiert ist. So fängt sie deutlich mehr Licht ein, was Ausbeute an gewonnenem Wasserstoff erhöht. Für die Strukturierung verwendeten sie preiswerte Materialien wie Wolframoxid und Rost.

Die EMPA-Forscher Florent Boudoire und Artur Braun haben eine spezielle Mikrostruktur auf der Photoelektrode aufgebracht, die aus winzigen Partikeln von Wolframoxid besteht. Die gelben Kügelchen werden auf einer Elektrode aufgetragen und dann mit einer hauchdünnen Schicht Eisenoxid überzogen. Fällt Licht auf die Partikel, wird es mehrfach hin und her reflektiert, bis es absorbiert ist, und die gesamte Energie für die Spaltung von Wassermolekülen zur Verfügung steht.

Im Grunde funktioniere die neu erdachte Mikrostruktur wie das Auge einer Motte, erklärt Florent Boudoire: Die Augen von Nachtfaltern müssen viel Licht einsammeln – und dürfen so wenig wie möglich reflektieren, sonst wird der Falter entdeckt und gefressen. Die Mikrostruktur dieser Augen ist speziell auf die Wellenlänge des Lichts angepasst. Die Forscher sind in der Lage, die Prozessparameter für die Filmbildung so einzustellen, dass die optischen Eigenschaften der Struktur auf das Sonnenspektrum abgestimmt sind.

Das Forschungsteam aus der Schweiz hat am Röntgenmikroskop von BESSY II untersucht, welche chemischen Prozesse im Detail bei der Elektrodenherstellung nötig sind. 

 

Zur Info der EMPA

Zur Publikation in Energy&Environmental Sciences

EMPA/arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Iridiumfreie Katalysatoren für die saure Wasserelektrolyse untersucht
    Science Highlight
    13.08.2025
    Iridiumfreie Katalysatoren für die saure Wasserelektrolyse untersucht
    Wasserstoff wird künftig eine wichtige Rolle spielen, als Brennstoff und als Rohstoff für die Industrie. Um jedoch relevante Mengen an Wasserstoff zu produzieren, muss Wasserelektrolyse im Multi-Gigawatt-Maßstab machbar werden. Ein Engpass sind die benötigten Katalysatoren, insbesondere Iridium ist ein extrem seltenes Element. Eine internationale Kooperation hat daher Iridiumfreie Katalysatoren für die saure Wasserelektrolyse untersucht, die auf dem Element Kobalt basieren. Durch Untersuchungen, unter anderem am LiXEdrom an der Berliner Röntgenquelle BESSY II, konnten sie Prozesse bei der Wasserelektrolyse in einem Kobalt-Eisen-Blei-Oxid-Material als Anode aufklären. Die Studie ist in Nature Energy publiziert.
  • Lithium-Schwefel-Batterien mit wenig Elektrolyt: Problemzonen identifiziert
    Science Highlight
    12.08.2025
    Lithium-Schwefel-Batterien mit wenig Elektrolyt: Problemzonen identifiziert
    Mit einer zerstörungsfreien Methode hat ein Team am HZB erstmals Lithium-Schwefel-Batterien im praktischen Pouchzellenformat untersucht, die mit besonders wenig Elektrolyt-Flüssigkeit auskommen. Mit operando Neutronentomographie konnten sie in Echtzeit visualisieren, wie sich der flüssige Elektrolyt während des Ladens und Entladens über mehrere Schichten verteilt und die Elektroden benetzt. Diese Erkenntnisse liefern wertvolle Einblicke in die Mechanismen, die zum Versagen der Batterie führen können, und sind hilfreich für die Entwicklung kompakter Li-S-Batterien mit hoher Energiedichte.
  • Selbstorganisierte Monolage verbessert auch bleifreie Perowskit-Solarzellen
    Science Highlight
    04.08.2025
    Selbstorganisierte Monolage verbessert auch bleifreie Perowskit-Solarzellen
    Zinn-Perowskit-Solarzellen sind nicht nur ungiftig, sondern auch potenziell stabiler als bleihaltige Perowskit-Solarzellen. Allerdings sind sie auch deutlich weniger effizient. Nun gelang einem internationalen Team eine deutliche Verbesserung:  Das Team identifizierte chemische Verbindungen, die von selbst eine molekulare Schicht bilden, welche sehr gut zur Gitterstruktur von Zinn-Perowskiten passt. Auf dieser Monolage lässt sich Zinn-Perowskit mit hervorragender optoelektronischer Qualität aufwachsen.