Topologische Isolatoren: Hochkarätiges Forschertreffen in Berlin

Hochkar&auml;tige Forscher trafen sich zur&nbsp; Fachtagung &ldquo;New Trends in Topological Insulators 2014&rdquo; am Gendarmenmarkt.</p>
<p>

Hochkarätige Forscher trafen sich zur  Fachtagung “New Trends in Topological Insulators 2014” am Gendarmenmarkt.

Vom 7. bis 10. Juli haben sich in Berlin 150 Wissenschaftlerinnen und Wissenschaftler getroffen, um ihre neuesten Erkenntnisse auf dem Gebiet der topologischen Isolatoren auszutauschen.

Topologische Isolatoren sind neuartige Quantenmaterialien, die im Inneren elektrisch isolierend, an der Oberfläche jedoch wegen topologisch geschützter und spinpolarisierter elektronischer Zustände metallisch leitend sind.

Die Konferenz “New Trends in Topological Insulators 2014” führte zahlreiche herausragende Forscherinnen und Forscher nach Berlin. 20 erhielten eine Einladung als Vortragende, darunter Laurens W. Molenkamp  (Leibniz-Preis, 2014), Yoichi Ando (Inoue Prize for Science, 2014), Zhi-Xun Shen (Buckley-Preis, 2011), Shoucheng Zhang (Buckley-Preis, 2012, zusammen mit Laurens W. Molenkamp).

Zu den Highlights der Tagung gehörten Themen wie optische Anregungen, verschränkte Elektron-Licht-Zustände, die Bedeutung korrelierter Elektronen sowie die direkte Abbildung von helikalen Kantenzuständen und von Majorana-Fermionen.

Das Forscher-Treffen im Gebäude der Berlin-Brandenburgischen Akademie der Wissenschaften wurde von der DFG und dem Helmholtz-Zentrum Berlin finanziert. Oliver Rader vom HZB hatte die Veranstaltung gemeinsam mit Gustav Bihlmayer (Forschungszentrum Jülich) und Saskia Fischer (Humboldt-Universität) organisiert.

Oliver Rader / kmh

  • Link kopieren

Das könnte Sie auch interessieren

  • BESSY II: Phosphorketten – ein 1D-Material mit 1D elektronischen Eigenschaften
    Science Highlight
    21.10.2025
    BESSY II: Phosphorketten – ein 1D-Material mit 1D elektronischen Eigenschaften
    Erstmals ist es einem Team an BESSY II gelungen, experimentell eindimensionale elektronische Eigenschaften in einem Material nachzuweisen. Die Proben bestanden aus kurzen Ketten aus Phosphoratomen, die sich auf einem Silbersubstrat selbst organisiert in bestimmten Winkeln bilden. Durch eine raffinierte Auswertung gelang es, die Beiträge von unterschiedlich ausgerichteten Ketten voneinander zu trennen und zu zeigen, dass die elektronischen Eigenschaften tatsächlich einen eindimensionalen Charakter besitzen. Berechnungen zeigten darüber hinaus, dass ein spannender Phasenübergang zu erwarten ist. Während das Material aus einzelnen Ketten halbleitend ist, wäre eine sehr dichte Kettenstruktur metallisch.
  • Ein innerer Kompass für Meereslebewesen im Paläozän
    Science Highlight
    20.10.2025
    Ein innerer Kompass für Meereslebewesen im Paläozän
    Vor Jahrmillionen produzierten einige Meeresorganismen mysteriöse Magnetpartikel von ungewöhnlicher Größe, die heute als Fossilien in Sedimenten zu finden sind. Nun ist es einem internationalen Team gelungen, die magnetischen Domänen auf einem dieser „Riesenmagnetfossilien” mit einer raffinierten Methode an der Diamond-Röntgenquelle zu kartieren. Ihre Analyse zeigt, dass diese Partikel es den Organismen ermöglicht haben könnten, winzige Schwankungen sowohl in der Richtung als auch in der Intensität des Erdmagnetfelds wahrzunehmen. Dadurch konnten sie sich verorten und über den Ozean navigieren. Die neue Methode eignet sich auch, um zu testen, ob bestimmte Eisenoxidpartikel in Marsproben tatsächlich biogenen Ursprungs sind.
  • Was vibrierende Moleküle über die Zellbiologie verraten
    Science Highlight
    16.10.2025
    Was vibrierende Moleküle über die Zellbiologie verraten
    Mit Infrarot-Vibrationsspektroskopie an BESSY II lassen sich hochaufgelöste Karten von Molekülen in lebenden Zellen und Zellorganellen in ihrer natürlichen wässrigen Umgebung erstellen, zeigt eine neue Studie von einem Team aus HZB und Humboldt-Universität zu Berlin. Die Nano-IR-Spektroskopie mit SNOM an der IRIS-Beamline eignet sich, um winzige biologische Proben zu untersuchen und Infrarotbilder der Molekülschwingungen mit Nanometer-Auflösung zu erzeugen. Es ist sogar möglich, 3D-Informationen, also Infrarot-Tomogramme, aufzuzeichnen. Um das Verfahren zu testen, hat das Team Fibroblasten auf einer hochtransparenten SiC-Membran gezüchtet und in vivo untersucht. Die Methode ermöglicht neue Einblicke in die Zellbiologie.