VEKMAG-Messplatz an BESSY II

Schematische Darstellung der VEKMAG-Messstation: Der Vektormagnet befindet sich in der Vakuumkammer (grau), die in einem sechsbeinigen Ger&uuml;st aufgeh&auml;ngt ist. Unterhalb des Magneten liegt die Detektorkammer (gr&uuml;n), im Bildvordergrund ist die Depositionskammer (dunkelgrau) zu sehen. Die Strahlqualit&auml;t wird durch eine Diagnose-Einheit (goldfarbig) kontinuierlich kontrolliert. <br /><br />

Schematische Darstellung der VEKMAG-Messstation: Der Vektormagnet befindet sich in der Vakuumkammer (grau), die in einem sechsbeinigen Gerüst aufgehängt ist. Unterhalb des Magneten liegt die Detektorkammer (grün), im Bildvordergrund ist die Depositionskammer (dunkelgrau) zu sehen. Die Strahlqualität wird durch eine Diagnose-Einheit (goldfarbig) kontinuierlich kontrolliert.

© Dr. Tino Noll

Gemeinsam mit dem HZB haben Teams von der Universität Regensburg, der Freien Universität Berlin sowie der Ruhr-Universität Bochum bei BESSY II einen einzigartigen, neuen Messplatz aufgebaut: ein Vektormagnet aus drei senkrechten Helmholtz-Spulen ermöglicht es, lokal an der Probenposition beliebig orientierte Magnetfelder einzustellen. 2015 sollen erste Messungen an magnetischen Materialien, Spinsystemen und nanostrukturierten Proben durchgeführt werden.

„Seit fast sechs Jahren treiben wir dieses Projekt gemeinsam voran“, berichtet HZB-Physiker Dr. Florin Radu. Er koordiniert das Projekt mit den drei Universitäten. An der Freien Universität Berlin wurde die Wachstumskammer für die Proben entworfen. Die Ruhr-Universität Bochum baute die Detektorkammern, und die Universität Regensburg hat das Konzept für die synchrotronstrahlungsbasierte ferromagnetische Resonanz entwickelt.

Schnelle Einstellung der Polarisation

Radu und sein Team sorgten indessen für optimale Experimentierbedingungen an der Beamline: „Wir brauchen einen extrem stabilen Strahl, möchten aber auch sehr rasch die Polarisation des Lichts ändern können“, erklärt er. „Daher haben wir eine Hexapod-Vakuumkammer mit sechs beweglichen Beinen entwickelt, die einen Spiegel trägt. Durch leichte Positionsänderungen der Beine verändern wir die Orientierung des Spiegels und damit die Polarisation des Strahls, und zwar binnen Sekunden, also rund hundertmal schneller als bisher.“ Die Tests zeigen, dass diese Anordnung das Verhältnis von Signal zu Rauschen um das zehnfache verbessert.

Temperaturbereich 1,6 K - 500 K

Der neue Experimentierplatz ermöglicht vielfältige Untersuchungen, insbesondere im weichen Röntgenbereich und bei Temperaturen von 500 Kelvin bis hinab zu 1,6 Kelvin. Dabei dringen die Röntgenstrahlen in die einzelnen Atome ein und regen ihre Außenelektronen an, so dass man magnetische Eigenschaften der einzelnen Elemente unterscheiden kann.

Der neue Messplatz wird auch im internationalen Vergleich einzigartige Messbedingungen für elementspezifische und zeitaufgelöste Messungen der ferromagnetischen und paramagnetischen Resonanz sowie für Spektroskopie- und Streuexperimente bieten. „Sein volles Potenzial wird der VEKMAG aber erst dann entfalten, wenn wir an BESSY II ein neues  und innovatives Strahlkonzept mit variabler Pulslänge bei voller Photonenintensität realisiert haben“, so Radu, denn: „Damit können wir dann schnelle Umschaltprozesse von Spins mit besonders hoher Zeitauflösung untersuchen.“

Das Projekt VEKMAG wurde vom Bundesministerium für Bildung und Forschung (BMBF) mit insgesamt rund vier Mio. Euro finanziert.


arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Batterieforschung: Alterungsprozesse operando sichtbar gemacht
    Science Highlight
    29.04.2025
    Batterieforschung: Alterungsprozesse operando sichtbar gemacht
    Lithium-Knopfzellen mit Elektroden aus Nickel-Mangan-Kobalt-Oxiden (NMC) sind sehr leistungsfähig. Doch mit der Zeit lässt die Kapazität leider nach. Nun konnte ein Team erstmals mit einem zerstörungsfreien Verfahren beobachten, wie sich die Elementzusammensetzung der einzelnen Schichten in einer Knopfzelle während der Ladezyklen verändert. An der Studie, die nun im Fachjournal Small erschienen ist, waren Teams der Physikalisch-Technischen Bundesanstalt (PTB), der Universität Münster sowie Forschende der Forschungsgruppe SyncLab des HZB und des Applikationslabors BLiX der Technischen Universität Berlin beteiligt. Ein Teil der Messungen fand mit einem Instrument im BLiX-Labor statt, ein weiterer Teil an der Synchrotronquelle BESSY II.
  • Neues Instrument bei BESSY II: Die OÆSE-Endstation in EMIL
    Science Highlight
    23.04.2025
    Neues Instrument bei BESSY II: Die OÆSE-Endstation in EMIL
    An BESSY II steht nun ein neues Instrument zur Untersuchung von Katalysatormaterialien, Batterieelektroden und anderen Energiesystemen zur Verfügung: die Operando Absorption and Emission Spectroscopy on EMIL (OÆSE) Endstation im Energy Materials In-situ Laboratory Berlin (EMIL). Ein Team um Raul Garcia-Diez und Marcus Bär hat die Leistungsfähigkeit des Instruments an elektrochemisch abgeschiedenem Kupfer demonstriert.
  • Grüner Wasserstoff: Käfigstruktur verwandelt sich in effizienten Katalysator
    Science Highlight
    17.04.2025
    Grüner Wasserstoff: Käfigstruktur verwandelt sich in effizienten Katalysator
    Clathrate zeichnen sich durch eine komplexe Käfigstruktur aus, die auch Platz für Gast-Ionen bietet. Nun hat ein Team erstmals untersucht, wie gut sich Clathrate als Katalysatoren für die elektrolytische Wasserstoffproduktion eignen. Das Ergebnis: Effizienz und Robustheit sind sogar besser als bei den aktuell genutzten Nickel-basierten Katalysatoren. Dafür fanden sie auch eine Begründung. Messungen an BESSY II zeigten, dass sich die Proben während der katalytischen Reaktion strukturell verändern: Aus der dreidimensionalen Käfigstruktur bilden sich ultradünne Nanoblätter, die maximalen Kontakt zu aktiven Katalysezentren ermöglichen. Die Studie ist in „Angewandte Chemie“ publiziert.