Dancing BESSY-VSR
Paul Goslawski from Godehard Wüstefeld's team was the initiator of this project: Why not demonstrate in vivid form, what the future project BESSY-VSR is all about? With novel cavities to be introduced in synchrotron storage ring BESSY II, the new BESSY-VSR is supposed to compress some of the stored electron buckets. So it is possible to produce brilliant light pulses with variable length: short and long pulses in one ring. The user is able to choose what kind of pulse he needs for his experiment. But the team still has to solve some tricky problems.
Two short movies are now produced to show how BESSY-VSR works and what remains to be solved: The principle as well as the difficulties are now being performed with a dance!
To realize his project, Paul quickly found enthusiastic volunteers: 24 colleagues took part, among them two heads of institutes. Most of them danced in a circle (the storage ring) as "electron buckets", while the "cavities" provided some drive to the system. With the help of a few more colleagues, the shooting of the videos itself only took one afternoon, whereas Paul spent some weekends editing the final film.
But it was worth the effort! Now, the two short films are available in the HZB media centre and on youtube, both in german and english language. "They could even be of good use in presentations", Paul says. Because only motion pictures can illustrate complex physics in an easy way.
arö
https://www.helmholtz-berlin.de/pubbin/news_seite?nid=14122;sprache=en
- Copy link
-
Perovskites: Hybrid materials as highly sensitive X-ray detectors
New bismuth-based organic-inorganic hybrid materials show exceptional sensitivity and long-term stability as X-ray detectors, significantly more sensitive than commercial X-ray detectors. In addition, these materials can be produced without solvents by ball milling, a mechanochemical synthesis process that is environmentally friendly and scalable. More sensitive detectors would allow for a reduction in the radiation exposure during X-ray examinations.
-
Electrical energy storage: BAM, HZB, and HU Berlin plan joint Berlin Battery Lab
The Federal Institute for Materials Research and Testing (BAM), the Helmholtz-Zentrum Berlin (HZB), and Humboldt University of Berlin (HU Berlin) have signed a memorandum of understanding (MoU) to establish the Berlin Battery Lab. The lab will pool the expertise of the three institutions to advance the development of sustainable battery technologies. The joint research infrastructure will also be open to industry for pioneering projects in this field.
-
BESSY II: Insight into ultrafast spin processes with femtoslicing
An international team has succeeded at BESSY II for the first time to elucidate how ultrafast spin-polarised current pulses can be characterised by measuring the ultrafast demagnetisation in a magnetic layer system within the first hundreds of femtoseconds. The findings are useful for the development of spintronic devices that enable faster and more energy-efficient information processing and storage. The collaboration involved teams from the University of Strasbourg, HZB, Uppsala University and several other universities.