Dancing BESSY-VSR

Paul Goslawski from Godehard Wüstefeld's team was the initiator of this project: Why not demonstrate in vivid form, what the future project BESSY-VSR is all about? With novel cavities to be introduced in synchrotron storage ring BESSY II, the new BESSY-VSR is supposed to compress some of the stored electron buckets. So it is possible to produce brilliant light pulses with variable length: short and long pulses in one ring. The user is able to choose what kind of pulse he needs for his experiment. But the team still has to solve some tricky problems.

Two short movies are now produced to show how BESSY-VSR works and what remains to be solved: The principle as well as the difficulties are now being performed with a dance!

To realize his project, Paul quickly found enthusiastic volunteers: 24 colleagues took part, among them two heads of institutes. Most of them danced in a circle (the storage ring) as "electron buckets", while the "cavities" provided some drive to the system. With the help of a few more colleagues, the shooting of the videos itself only took one afternoon, whereas Paul spent some weekends editing the final film.

But it was worth the effort! Now, the two short films are available in the HZB media centre and on youtube, both in german and english language. "They could even be of good use in presentations", Paul says. Because only motion pictures can illustrate complex physics in an easy way.    

arö

  • Copy link

You might also be interested in

  • Battery research: visualisation of aging processes operando
    Science Highlight
    29.04.2025
    Battery research: visualisation of aging processes operando
    Lithium button cells with electrodes made of nickel-manganese-cobalt oxides (NMC) are very powerful. Unfortunately, their capacity decreases over time. Now, for the first time, a team has used a non-destructive method to observe how the elemental composition of the individual layers in a button cell changes during charging cycles. The study, now published in the journal Small, involved teams from the Physikalisch-Technische Bundesanstalt (PTB), the University of Münster, researchers from the SyncLab research group at HZB and the BLiX laboratory at the Technical University of Berlin. Measurements were carried out in the BLiX laboratory and at the BESSY II synchrotron radiation source.
  • New instrument at BESSY II: The OÆSE endstation in EMIL
    Science Highlight
    23.04.2025
    New instrument at BESSY II: The OÆSE endstation in EMIL
    A new instrument is now available at BESSY II for investigating catalyst materials, battery electrodes and other energy devices under operating conditions: the Operando Absorption and Emission Spectroscopy on EMIL (OÆSE) endstation in the Energy Materials In-situ Laboratory Berlin (EMIL). A team led by Raul Garcia-Diez and Marcus Bär showcases the instrument’s capabilities via a proof-of-concept study on electrodeposited copper.
  • Green hydrogen: A cage structured material transforms into a performant catalyst
    Science Highlight
    17.04.2025
    Green hydrogen: A cage structured material transforms into a performant catalyst
    Clathrates are characterised by a complex cage structure that provides space for guest ions too. Now, for the first time, a team has investigated the suitability of clathrates as catalysts for electrolytic hydrogen production with impressive results: the clathrate sample was even more efficient and robust than currently used nickel-based catalysts. They also found a reason for this enhanced performance. Measurements at BESSY II showed that the clathrates undergo structural changes during the catalytic reaction: the three-dimensional cage structure decays into ultra-thin nanosheets that allow maximum contact with active catalytic centres. The study has been published in the journal ‘Angewandte Chemie’.