Dancing BESSY-VSR
Paul Goslawski from Godehard Wüstefeld's team was the initiator of this project: Why not demonstrate in vivid form, what the future project BESSY-VSR is all about? With novel cavities to be introduced in synchrotron storage ring BESSY II, the new BESSY-VSR is supposed to compress some of the stored electron buckets. So it is possible to produce brilliant light pulses with variable length: short and long pulses in one ring. The user is able to choose what kind of pulse he needs for his experiment. But the team still has to solve some tricky problems.
Two short movies are now produced to show how BESSY-VSR works and what remains to be solved: The principle as well as the difficulties are now being performed with a dance!
To realize his project, Paul quickly found enthusiastic volunteers: 24 colleagues took part, among them two heads of institutes. Most of them danced in a circle (the storage ring) as "electron buckets", while the "cavities" provided some drive to the system. With the help of a few more colleagues, the shooting of the videos itself only took one afternoon, whereas Paul spent some weekends editing the final film.
But it was worth the effort! Now, the two short films are available in the HZB media centre and on youtube, both in german and english language. "They could even be of good use in presentations", Paul says. Because only motion pictures can illustrate complex physics in an easy way.
arö
https://www.helmholtz-berlin.de/pubbin/news_seite?nid=14122;sprache=en
- Copy link
-
Synchrotron radiation sources: toolboxes for quantum technologies
Synchrotron radiation sources generate highly brilliant light pulses, ranging from infrared to hard X-rays, which can be used to gain deep insights into complex materials. An international team has now published an overview on synchrotron methods for the further development of quantum materials and technologies in the journal Advanced Functional Materials: Using concrete examples, they show how these unique tools can help to unlock the potential of quantum technologies such as quantum computing, overcome production barriers and pave the way for future breakthroughs.
-
Peat as a sustainable precursor for fuel cell catalyst materials
Iron-nitrogen-carbon catalysts have the potential to replace the more expensive platinum catalysts currently used in fuel cells. This is shown by a study conducted by researchers from the Helmholtz-Zentrum Berlin (HZB), Physikalisch-Technische Bundesanstalt (PTB) and universities in Tartu and Tallinn, Estonia. At BESSY II, the team observed the formation of complex microstructures within various samples. They then analysed which structural parameters were particularly important for fostering the preferred electrochemical reactions. The raw material for such catalysts is well decomposed peat.
-
Helmholtz Investigator Group on magnons
Dr Hebatalla Elnaggar is setting up a new Helmholtz Investigator Group at HZB. At BESSY II, the materials scientist will investigate so-called magnons in magnetic perovskite thin films. The aim is to lay the foundations for future terahertz magnon technology: magnonic devices operating in the terahertz range could process data using a fraction of the energy required by the most advanced semiconductor devices, and at speeds up to a thousand times faster.