BESSY II – From Pico to Femto – time resolved studies at BESSY II

180 scientists listened to the lectures. <span>The aim of the dialogue is to identify future scientific fields as well as expectations, needs and requirements</span> for BESSY II.

180 scientists listened to the lectures. The aim of the dialogue is to identify future scientific fields as well as expectations, needs and requirements for BESSY II.

180 scientists attended the workshop on time resolved studies

From 26 to 27 January 2015, at the HZB workshop “From Pico to Femto”, more than 180 scientists discussed the advantages of conducting measurements on different time scales. With BESSY VSR, HZB is looking forward to perform a so-far unique upgrade to an electron storage ring: When complete, BESSY II will offer a flexible pulse duration of the useful light without diminishing the brilliancy of the light pulses.

Which specific areas of research could benefit from this was presented by speakers from university and non-university research establishments over two days in parallel sessions. Thematic blocks addressed in the lectures included magnetism, energy research, biosystems, and catalysis research.

Presently, BESSY II already allows measurement on different time scales, with methods such as low-alpha mode and femtoslicing available for user experiments. As it stands, however, this is limited because the short pulses come at the cost of light intensity.

“We were especially pleased to see so many researchers who have not yet experimented at BESSY II taking part in our workshop,” says organizer Dr. Antje Vollmer. About one third of the participants who followed the lectures in the full BESSY auditorium are potential new users of the facility.
The participants also expressed their own future needs for the machine and sampling environment. The results of the discussions were recorded and will be incorporated into the future plans for the BESSY VSR upgrade project.

The event was part of a series of foresight workshops HZB will be holding as a way to communicate closely with the user community about their research interests and needs. Already this year, more workshops will be held to address further questions regarding research at the photon source BESSY II.

You can read the abstracts of the lectures in the workshop booklet:  booklet

(sz)

  • Copy link

You might also be interested in

  • The twisted nanotubes that tell a story
    News
    09.12.2025
    The twisted nanotubes that tell a story
    In collaboration with scientists in Germany, EPFL researchers have demonstrated that the spiral geometry of tiny, twisted magnetic tubes can be leveraged to transmit data based on quasiparticles called magnons, rather than electrons.
  • Ernst Eckhard Koch Prize and Innovation Award on Synchrotron Radiation 2025
    News
    05.12.2025
    Ernst Eckhard Koch Prize and Innovation Award on Synchrotron Radiation 2025
    At the 27th BESSY@HZB User Meeting, the Friends of HZB honoured the dissertation of Dr Enggar Pramanto Wibowo (Friedrich-Alexander University Erlangen-Nuremberg). The Innovation Award on Synchrotron Radiation 2025 went to Prof. Tim Salditt (Georg-August-University Göttingen) and Professors Danny D. Jonigk and Maximilian Ackermann (both, University Hospital of RWTH Aachen University). 
  • Bright prospects for tin perovskite solar cells
    Science Highlight
    03.12.2025
    Bright prospects for tin perovskite solar cells
    Perovskite solar cells are widely regarded as the next generation photovoltaic technology. However, they are not yet stable enough in the long term for widespread commercial use. One reason for this is migrating ions, which cause degradation of the semiconducting material over time. A team from HZB and the University of Potsdam has now investigated the ion density in four different, widely used perovskite compounds and discovered significant differences. Tin perovskite semiconductors produced with an alternative solvent had a particular low ion density — only one tenth that of lead perovskite semiconductors. This suggests that tin-based perovskites could be used to make solar cells that are not only really environmentally friendly but also very stable.