Baubeginn für Beschleunigerhalle bERLinPro am Helmholtz-Zentrum Berlin

3D-Modelle der Beschleunigerhalle für bERLinPro

3D-Modelle der Beschleunigerhalle für bERLinPro

Am HZB- Standort Adlershof entsteht ein neuer Linearbeschleuniger mit Energierückgewinnung

Im Rahmen von bERLinPro entwickeln Forscherinnen und Forscher des HZB eine neuartige Beschleunigertechnologie. Mit diesem Prototypen werden alle Schlüsselelemente für einen Hochstrombetrieb solcher Anlagen entwickelt und getestet. Er soll die Machbarkeit dieser Technologie demonstrieren.

Herausfordernd ist dabei nicht nur die neue Beschleunigertechnologie. Auch die Bauarbeiten müssen spezielle Anforderungen berücksichtigen. Zum einen die Anforderungen des Strahlenschutzes, die durch den späteren Betrieb der Anlage bestehen und ein unterirdisches Gebäude erfordern. Zum anderen ist der Grundwasserspiegel unter dem Gelände sehr hoch. Aus diesem Grund wird die Baugrube des Gebäudes in einer so genannten Trogbauweise errichtet. Das bedeutet, dass die eigentliche Beschleunigerhalle von einer Betonwanne umgeben ist. Unterstützt von Pumpen, hält diese während der Bauphase das Wasser vom Gebäude fern. Die Trogbauweise gilt bei schwierigem Baugrund als besonders sicheres und umweltverträgliches Verfahren, weil dadurch Auswirkungen auf den Boden und auf Nachbargebäude vermieden werden.

In der ersten Bauphase werden die seitlichen Schlitzwände und eine Bodenplatte in Form von überlappenden Betonlinsen in 12 Metern Tiefe errichtet. Erst danach beginnen die Arbeiter mit dem Bau der Beschleunigerhalle. Aus Gründen des Strahlenschutzes wird diese dann auch mit einem zirka drei Meter hohen Erdwall bedeckt. Zusätzlich wird für die Versorgung der Beschleunigeranlage eine Technikhalle benötigt. Sie wird zehn Meter hoch sein und ist direkt mit der Beschleunigerhalle verbunden. Die Baukosten belaufen sich auf ca. 12,7 Millionen Euro.

Die Entwicklung von Linac-basierten Lichtquellen bietet die einzigartige Chance, das komplette und komplementäre Spektrum an Synchrotronstrahlungsquellen in der Helmholtz-Gemeinschaft anzubieten. Dazu gehören Freie-Elektronen Laser, Speicherringe und nun auch Linearbeschleuniger mit Energierückgewinnung  (englisch: Energy Recovery Linacs - ERL). Der ERL vereinigt als einziger Beschleunigertyp die Vorteile von Speicherringen und Linearbeschleunigern: Er erlaubt zum einen statische Strukturuntersuchungen mit hoher Auflösung. Es sind aber zeitaufgelöste Messungen möglich, mit denen man die Dynamik einer Struktur bei moderater Pulsintensität untersuchen kann, die die Proben nicht zerstört. Da zwischen beiden Betriebsmodi schnell gewechselt werden kann, lassen sich solch komplementäre Untersuchungen an der gleichen Probe innerhalb kurzer Zeit durchführen. Das ist ein ausschlaggebender Vorteil für viele Experimente. Zudem können bei ERL basierten Lichtquellen viele Beamlines gleichzeitig betrieben werden, so wie man es von Speicherringquellen kennt.

Die Funktionsweise des ERL

Im Energy Recovery Linac Prototype bERLinPro werden Elektronenpakete in einem Injektor erzeugt und in einem langen, geraden und supraleitenden Linearbeschleuniger (Linac) auf nahezu Lichtgeschwindigkeit beschleunigt. Die Elektronen werden dann durch Magnete, so genannte Undulatoren, geführt und erzeugen dort Röntgenstrahlung wie in einer Synchrotronstrahlungsquelle. Sie haben jedoch eine höhere Brillanz, da die Elektronenpakete im Linac kompakter bleiben als in einem Kreisbeschleuniger. Die Elektronenpakete werden kontinuierlich injiziert und kommen nach ihrem Umlauf wieder in den Linac zurück, wo sie abgebremst werden. Dadurch gewinnt man nahezu die gesamte Energie zurück.

Den Baufortschritt von bERLinPro können Sie hier über unsere Webcam im Zeitraffermodus verfolgen.

  • Link kopieren

Das könnte Sie auch interessieren

  • Die Zukunft der Korallen – Was Röntgenuntersuchungen zeigen können
    Interview
    12.11.2025
    Die Zukunft der Korallen – Was Röntgenuntersuchungen zeigen können
    In diesem Sommer war es in allen Medien. Angetrieben durch die Klimakrise haben nun auch die Ozeane einen kritischen Punkt überschritten, sie versauern immer mehr. Meeresschnecken zeigen bereits erste Schäden, aber die zunehmende Versauerung könnte auch die kalkhaltigen Skelettstrukturen von Korallen beeinträchtigen. Dabei leiden Korallen außerdem unter marinen Hitzewellen und Verschmutzung, die weltweit zur Korallenbleiche und zum Absterben ganzer Riffe führen. Wie genau wirkt sich die Versauerung auf die Skelettbildung aus?

    Die Meeresbiologin Prof. Dr. Tali Mass von der Universität Haifa, Israel, ist Expertin für Steinkorallen. Zusammen mit Prof. Dr. Paul Zaslansky, Experte für Röntgenbildgebung an der Charité Berlin, untersuchte sie an BESSY II die Skelettbildung bei Babykorallen, die unter verschiedenen pH-Bedingungen aufgezogen wurden. Antonia Rötger befragte die beiden Experten online zu ihrer aktuellen Studie und der Zukunft der Korallenriffe. 

  • Energie von Ladungsträgerpaaren in Kuprat-Verbindungen
    Science Highlight
    05.11.2025
    Energie von Ladungsträgerpaaren in Kuprat-Verbindungen
    Noch immer ist die Hochtemperatursupraleitung nicht vollständig verstanden. Nun hat ein internationales Forschungsteam an BESSY II die Energie von Ladungsträgerpaaren in undotiertem La₂CuO₄ vermessen. Die Messungen zeigten, dass die Wechselwirkungsenergien in den potenziell supraleitenden Kupferoxid-Schichten deutlich geringer sind als in den isolierenden Lanthanoxid-Schichten. Die Ergebnisse tragen zum besseren Verständnis der Hochtemperatur-Supraleitung bei und könnten auch für die Erforschung anderer funktionaler Materialien relevant sein.
  • Elektrokatalyse mit doppeltem Nutzen – ein Überblick
    Science Highlight
    31.10.2025
    Elektrokatalyse mit doppeltem Nutzen – ein Überblick
    Hybride Elektrokatalysatoren können beispielsweise gleichzeitig grünen Wasserstoff und wertvolle organische Verbindungen produzieren. Dies verspricht wirtschaftlich rentable Anwendungen. Die komplexen katalytischen Reaktionen, die bei der Herstellung organischer Verbindungen ablaufen, sind jedoch noch nicht vollständig verstanden. Moderne Röntgenmethoden an Synchrotronquellen wie BESSY II ermöglichen es, Katalysatormaterialien und die an ihren Oberflächen ablaufenden Reaktionen in Echtzeit, in situ und unter realen Betriebsbedingungen zu analysieren. Dies liefert Erkenntnisse, die für eine gezielte Optimierung genutzt werden können. Ein Team hat nun in Nature Reviews Chemistry einen Überblick über den aktuellen Wissensstand veröffentlicht.