Rad mit dreifacher Schallgeschwindigkeit zur Pulsauswahl an BESSY II

Skizze des MHz-Lichtchoppers, der sich mit bis zu dreifacher Schallgeschwindigkeit dreht.

Skizze des MHz-Lichtchoppers, der sich mit bis zu dreifacher Schallgeschwindigkeit dreht. © K. Holldack/HZB

Um gezielt einen von 400 Röntgenblitzen an BESSY II herauszupicken, haben Teams aus dem Forschungszentrum Jülich, dem MPI für Mikrostrukturphysik Halle und dem HZB einen extrem rasch rotierenden MHz-Lichtchopper entwickelt – ein Kernstück des neuen gemeinsamen Labors Uppsala-Berlin zur Extraktion des Hybrid-Pulses aus der 200-Nanosekunden-Lücke im Füllmuster - und an einem BESSY II Strahlrohr eingebaut. „Das vielleicht schnellste Rad der Welt“ besitzt am Rand winzige Schlitze von nur 70 Mikrometern  Breite, die sich mit dreifacher Schallgeschwindigkeit im Vakuum reibungsfrei gegen den Röntgenstrahl bewegen. Damit steht den Nutzerinnen und Nutzern nun auch im Normalbetrieb ein Single-Bunch-Modus zur Verfügung.

In Speicherringen wie BESSY II kreisen kurze Elektronenpulse und erzeugen Röntgenblitze, wenn sie an einem der fast 50 Strahlrohre vorbeikommen. Viele Experimente nutzen aber gar nicht alle der 400 möglichen Pulse pro Umlauf, die der Elektronenstrahl erzeugt, sondern erfordern nur einen einzigen Puls. Damit nur dieser gewünschte Puls die Probe erreicht und alle anderen ausgeblendet werden, könnte man ein Rad mit Löchern in den Strahlengang setzen, das mit den Elektronen im Ring synchron läuft. Doch diese einleuchtende Idee war keineswegs einfach umzusetzen:  denn dieses Rad muss so schnell sein, dass es den Röntgenstrahl alle 800 Nanosekunden (ns) passieren lässt – es muss sich also mit der dreifachen Schallgeschwindigkeit von rund 1 km/s drehen und ist dabei enormen Materialbelastungen durch Fliehkräfte ausgesetzt.

Tatsächlich ist es nun einem Team aus Physikern und Ingenieuren aus dem Forschungszentrum Jülich, dem Max-Planck-Institut für Mikrostrukturphysik Halle/S. und dem HZB gelungen, so ein Gerät zu entwickeln und im Dauerbetrieb an einem BESSY II Strahlrohr bereitzustellen. Es besteht  aus einer speziell geformten Scheibe aus einer besonderen Aluminiumlegierung, die am äußeren  Rand winzige Schlitze von nur 70 µm Breite hat. Diese Schlitze bewegen sich mit rund 1 km/s im Vakuum reibungsfrei gegen den Röntgenstrahl. Dabei wird die Drehung mit einer ultraschnellen digitalen Regelungselektronik  hochpräzise (auf 2 ns genau) gesteuert, so  dass  nur ein einziger Röntgenpuls aus dem gesamten Puls-Zug bei BESSY II durchkommt und anderen blockiert werden. 

Experimentatoren an diesem Strahlrohr können nun selbst entscheiden, ob sie den gepulsten „Single Bunch Modus“ oder den vollen quasi-kontinuierlichen Röntgenstrahl benutzen wollen. „Dies ist besonders wichtig für die ultraschnelle Röntgenphysik und Flugzeitspektroskopie-Methoden, die in unserem Zukunftsprojekt BESSY-VSR eine große Rolle spielen werden - denn hier sollen ultrakurze  Röntgenpulse unterschiedlicher Länge bereitgestellt werden“, erklärt Karsten Holldack aus dem Institut Methoden und Instrumentierung der Forschung mit Synchrotronstrahlung am HZB.

Die Arbeit wurde jetzt im renommierten Fachjournal Optics Letters vorgestellt:Phase-locked MHz pulse selector for x-ray sources, Daniel F. Förster, Bernd Lindenau, Marko Leyendecker, Franz Janssen, Carsten Winkler, Frank O. Schumann, Jürgen Kirschner, Karsten Holldack, and Alexander Föhlisch

Optics Letters, Vol. 40, 10, (2015); doi:10.1364/OL.40.002265 

KH/arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Susanne Nies in EU-Beratergruppe zu Green Deal berufen
    Nachricht
    12.11.2025
    Susanne Nies in EU-Beratergruppe zu Green Deal berufen
    Dr. Susanne Nies leitet am HZB das Projekt Green Deal Ukraina, das den Aufbau eines nachhaltigen Energiesystems in der Ukraine unterstützt. Die Energieexpertin wurde nun auch in die wissenschaftliche Beratergruppe der Europäischen Kommission berufen, um im Zusammenhang mit der Netto-Null-Zielsetzung (DG GROW) regulatorische Belastungen aufzuzeigen und dazu zu beraten.
  • Die Zukunft der Korallen – Was Röntgenuntersuchungen zeigen können
    Interview
    12.11.2025
    Die Zukunft der Korallen – Was Röntgenuntersuchungen zeigen können
    In diesem Sommer war es in allen Medien. Angetrieben durch die Klimakrise haben nun auch die Ozeane einen kritischen Punkt überschritten, sie versauern immer mehr. Meeresschnecken zeigen bereits erste Schäden, aber die zunehmende Versauerung könnte auch die kalkhaltigen Skelettstrukturen von Korallen beeinträchtigen. Dabei leiden Korallen außerdem unter marinen Hitzewellen und Verschmutzung, die weltweit zur Korallenbleiche und zum Absterben ganzer Riffe führen. Wie genau wirkt sich die Versauerung auf die Skelettbildung aus?

    Die Meeresbiologin Prof. Dr. Tali Mass von der Universität Haifa, Israel, ist Expertin für Steinkorallen. Zusammen mit Prof. Dr. Paul Zaslansky, Experte für Röntgenbildgebung an der Charité Berlin, untersuchte sie an BESSY II die Skelettbildung bei Babykorallen, die unter verschiedenen pH-Bedingungen aufgezogen wurden. Antonia Rötger befragte die beiden Experten online zu ihrer aktuellen Studie und der Zukunft der Korallenriffe. 

  • Langzeit-Stabilität von Perowskit-Solarzellen deutlich gesteigert
    Science Highlight
    07.11.2025
    Langzeit-Stabilität von Perowskit-Solarzellen deutlich gesteigert
    Perowskit-Solarzellen sind kostengünstig in der Herstellung und liefern viel Leistung pro Fläche. Allerdings sind sie bisher noch nicht stabil genug für den Langzeit-Einsatz. Nun hat ein internationales Team unter der Leitung von Prof. Dr. Antonio Abate durch eine neuartige Beschichtung der Grenzfläche zwischen Perowskitschicht und dem Top-Kontakt die Stabilität drastisch erhöht. Dabei stieg der Wirkungsgrad auf knapp 27 Prozent, was dem aktuellen state-of-the-art entspricht. Dieser hohe Wirkungsgrad nahm auch nach 1.200 Stunden im Dauerbetrieb nicht ab. An der Studie waren Forschungsteams aus China, Italien, der Schweiz und Deutschland beteiligt. Sie wurde in Nature Photonics veröffentlicht.