Kristallstruktur und Magnetismus – neuer Einblick in die Grundlagen der Festkörperphysik

Mit einem verbesserten Verfahren konnten diese Proben mit exakt definierten Anteilen aus Nickel und Kupfer hergestellt werden. Foto: M. Tovar/HZB

Mit einem verbesserten Verfahren konnten diese Proben mit exakt definierten Anteilen aus Nickel und Kupfer hergestellt werden. Foto: M. Tovar/HZB

Durch den Jahn-Teller-Effekt sind Tetraeder mit einem Nickel-Atom im Zentrum etwas gestreckt (grün), während die Tetraeder mit einem Kupfer-Atom im Zentrum gestaucht sind (blau).

Durch den Jahn-Teller-Effekt sind Tetraeder mit einem Nickel-Atom im Zentrum etwas gestreckt (grün), während die Tetraeder mit einem Kupfer-Atom im Zentrum gestaucht sind (blau). © M. Tovar/HZB

Nur in der orthorhombischen Phase (hellblau), die bei den meisten Mischkristallen tief unterhalb der Raumtemperatur (293 K) liegt, treten magnetische Phasen auf. Dabei konnten die HZB-Forscher zwei magnetische Phasen identifizieren (schwarze und blaue Messpunkte). Bei einem Kupferanteil um 15 % bleibt die orthorhombische Phase jedoch bis deutlich über der Raumtemperatur stabil (Ts2).

Nur in der orthorhombischen Phase (hellblau), die bei den meisten Mischkristallen tief unterhalb der Raumtemperatur (293 K) liegt, treten magnetische Phasen auf. Dabei konnten die HZB-Forscher zwei magnetische Phasen identifizieren (schwarze und blaue Messpunkte). Bei einem Kupferanteil um 15 % bleibt die orthorhombische Phase jedoch bis deutlich über der Raumtemperatur stabil (Ts2). © Reehuis/HZB

HZB-Team entschlüsselt Zusammenhang zwischen magnetischen Wechselwirkungen und Verzerrungen der Kristallstruktur in einem geometrisch „frustrierten“ Spinell-System

Ein Team am HZB hat erstmals im Detail untersucht, wie sich in kristallinen Proben mit Spinellstruktur magnetische und geometrische Ordnungen gegenseitig beeinflussen. Die Gruppe hatte dazu eine Reihe von Mischkristallen mit der Summenformel Ni1-xCuxCr2O4 synthetisiert, in denen das Element Nickel sukzessive durch Kupfer ersetzt wurde. Mit Neutronenstreuexperimenten am BER II deckten sie auf, wie sich dadurch nicht nur die  Kristallstruktur verändert, sondern auch neue magnetische Phasen auftreten. Die Ergebnisse sind in Physical Review B erschienen.

Spinelle bestehen aus dicht gepackten, hochsymmetrischen Ebenen von Sauerstoffatomen (etwa wie eine dicht gepackte Murmelkiste), in deren Zwischenräumen unterschiedliche metallische Elemente eingelagert sind. Dadurch entsteht eine große Bandbreite von Verbindungen, die in der Rohstoffindustrie und als feuerfeste und magnetische Werkstoffe zum Einsatz kommen. Im Spinellsystem Ni1-xCuxCr2O4 verursachen die eingelagerten Metallionen eine Verzerrung der Kristallstruktur und weisen zusätzlich magnetische Momente auf, die sich strukturbedingt nicht beliebig ausrichten können. So kommt es, abhängig von der Temperatur, zu spektakulären neuen Ordnungen. Ein HZB-Team hat nun dieses Chrom-Spinell-System umfassend analysiert und erstmals fundamentale Erklärungen für das komplexe Phasendiagramm gefunden.

Herstellung der Mischkristalle

Um hochreine Proben mit exakt definierten Anteilen von Nickel und Kupfer herzustellen, musste Michael Tovar zunächst die Präparationstechnik erheblich verbessern. Die Reihe beginnt mit Proben aus reinem Nickel-Chrom-Spinell (x=0; grünes Pulver) und setzt sich über Proben mit zunehmendem Kupfer-Anteil fort. Dabei werden die Proben immer dunkler. Am Ende ist der Kupfer-Anteil bei 100 %, das Pulver ist schwarz. Die Pulver bestehen aus kleinen Kristallkörnern mit Durchmessern zwischen 30 und 50 Mikrometern. Das spannende an dieser Mischkristallreihe: Die Nickel- oder Kupfer-Atome sitzen auf so genannten Tetraeder-Plätzen der Kristallstruktur. Aufgrund ihrer unterschiedlichen Elektronenkonfiguration sind diese Tetraeder bei Nickel entlang der kristallographischen c-Achse gestreckt, bei Kupfer dagegen gestaucht (Jahn-Teller-Effekt). Über den Kupferanteil lässt sich somit die Verzerrung der Kristallstruktur steuern, was sich wiederum auf die magnetischen Ordnungen auswirkt.

Phasendiagramm zwischen 2 und 900 Kelvin

Mit Neutronenstreuexperimenten am Forschungsreaktor BER II gelang es Manfred Reehuis und Michael Tovar, die strukturellen und magnetischen Eigenschaften in jeder Mischkristallprobe zu ermitteln und zwar in einem weiten Temperaturbereich von nahe dem Nullpunkt der Temperaturskala bis über 900 Kelvin. Die beiden Wissenschaftler entdeckten neue magnetische Ordnungen und konnten erstmals ein vollständiges Phasendiagramm des Systems erstellen. Dabei ist bei hohen Temperaturen die Kristallstruktur kubisch (drei rechte Winkel, drei gleiche Kantenlängen), da die Bewegungsenergie der Atome den Jahn-Teller-Effekt noch unterdrückt, magnetische Ordnungen können sich nicht etablieren. Bei sinkender Temperatur setzt der Jahn-Teller-Effekt ein, der die Kristallsymmetrie erniedrigt: zunächst tetragonal (drei rechte Winkel, zwei gleiche Kantenlängen) und schließlich orthorhombisch (drei rechte Winkel, drei unterschiedliche Kantenlängen).

Neue magnetische Phasen

Das Interessante: Die magnetischen Phasen treten nur bei orthorhombischer Struktur auf, die sowohl beim reinen Nickel- als auch beim Kupfer-Spinell weit unterhalb der Raumtemperatur liegen. „Wir konnten erstmals die magnetischen Strukturen exakt bestimmen und damit nachweisen, dass es zwischen den magnetischen Ordnungszuständen und den kristallinen Strukturen einen Zusammenhang gibt. Dies war eine Frage, die Physiker seit mehr als 50 Jahren beschäftigt hat“, erklärt Manfred Reehuis.

Orthorhombische "Insel"

Bei einem Mischungsverhältnis von 85% Nickel und 15% Kupfer weist das Spinellsystem eine Art orthorhombische „Insel“ im Phasendiagramm auf, bei der kurzzeitig der beobachtete Zusammenhang von Kristallsymmetrie und Magnetismus aufgebrochen wird. Die Ursache: Anders als bisher angenommen erfolgt die Verzerrung der Nickel- und Kupfertetraeder nicht in die gleiche Richtung, sondern 90° zueinander verdreht. Daher kommt es beim genannten Mischungsverhältnis nicht zu einem Ausgleich der Verzerrungen, sondern stattdessen zu einer maximalen Verzerrung der Struktur. „Atome sind eben keine Kugeln, sondern machen verrückte Sachen, insbesondere wenn sie nicht isoliert auftreten, sondern in einem geometrischen Verbund wie eben in einer Kristallstruktur“, sagt Michael Tovar.

Zur Publikation: Phys. Rev. B 91, 024407 ."Competing Jahn-Teller distortions and ferrimagnetic ordering in the geometrically frustrated system Ni1−xCuxCr2O4"
M. Reehuis, M. Tovar, D. M. Többens, P. Pattison, A. Hoser, and B. Lake
http://dx.doi.org/10.1103/PhysRevB.91.024407

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Grüner Wasserstoff: MXene als Katalysatoren für die Sauerstoffentwicklung geeignet
    Science Highlight
    09.09.2024
    Grüner Wasserstoff: MXene als Katalysatoren für die Sauerstoffentwicklung geeignet
    Die Materialklasse der MXene besitzt vielfältige Talente. Nun hat ein internationales Team um HZB-Chemikerin Michelle Browne gezeigt, dass MXene als Katalysatoren für die Sauerstoffentwicklungsreaktion bei der elektrolytischen Wasserspaltung geeignet sind. Dabei arbeiten sie stabiler und effizienter als die derzeit besten Metalloxid-Katalysatoren. Das Team hat die neuartigen Katalysatoren für die elektrolytische Aufspaltung von Wasser nun umfassend an der Berliner Röntgenquelle BESSY II und am Synchrotron Soleil, Frankreich, charakterisiert.
  • Trillium-Gitter in Langbeiniten ermöglicht Quantenphänomen
    Science Highlight
    23.08.2024
    Trillium-Gitter in Langbeiniten ermöglicht Quantenphänomen
    In der Materialklasse der Langbeinite wurde eine 3D-Quantenspinflüssigkeit entdeckt. Gründe für dieses ungewöhnliche Verhalten liegen in der kristallinen Struktur und den dadurch bedingten besonderen magnetischen Wechselwirkungen. Dies hat nun ein internationales Team durch Experimente an der Neutronenquelle ISIS und theoretische Modellierungen an einer Nickel-Langbeinit-Probe gezeigt.
  • Grüner Wasserstoff: 'Künstliches Blatt' wird unter Druck besser
    Science Highlight
    31.07.2024
    Grüner Wasserstoff: 'Künstliches Blatt' wird unter Druck besser
    Wasserstoff kann in speziellen Anlagen über die elektrolytische Aufspaltung von Wasser erzeugt werden. Dabei ist eine Option die Verwendung von Photoelektroden, die Sonnenlicht in Spannung für die Elektrolyse umwandeln. Nun zeigt ein Forschungsteam am HZB, dass die Effizienz solcher photoelektrochemischen Zellen (PEC-Zellen) unter Druck noch deutlich steigen kann.