Inhomogene Chlorverteilung in Perowskit-Schichten

Experimente an BESSY II zeigten, dass die Konzentration von Chlor an der Grenzfl&auml;che Perowskit/TiO<sub>2</sub> h&ouml;her ist als in der restlichen Schicht.

Experimente an BESSY II zeigten, dass die Konzentration von Chlor an der Grenzfläche Perowskit/TiO2 höher ist als in der restlichen Schicht. © D. Starr/HZB

Mit verschiedenen röntgenspektroskopischen Experimenten an BESSY II zeigte ein HZB-Team, dass sich Chlor in einer bestimmten Klasse von Perowskiten sehr ungleichmäßig verteilt: während an der Oberfläche Chlor nicht nachweisbar ist, findet man in tieferen Lagen, insbesondere an der Grenzfläche zum Substrat, eine signifikante Chlorkonzentration. Die Ergebnisse könnten Wege aufzeigen, bei der Herstellung der Schichten die Verteilung der Chloratome zu kontrollieren und dadurch die Effizienz von Perowskit-Dünnschicht-Solarzellen weiter zu steigern.

Seit 2012 in rascher Folge immer neue Wirkungsgradrekorde vermeldet wurden, zählen organisch-anorganische Perowskitmaterialien zu den interessantesten neuen Materialklassen für Solarzellen. Gerade die organometallischen Halogenid-Perowskite sind kostengünstig, einfach zu verarbeiten und haben bereits Wirkungsgrade bis zu 20,1 % erzielt. Zu den Pionieren auf diesem Gebiet zählt die Gruppe um Henry Snaith an der University of Oxford, England.

Chlor scheint einfach zu verschwinden

Die beste Leistung zeigten bislang Perowskit-Schichten aus einer Lösung von Blei-Methylammonium und den Halogeniden Iod und Chlor. Doch obwohl in den Ausgangsprodukten das Mischungsverhältnis zwischen Chlor und Iod etwa 2/3 beträgt, enthalten die fertigen Perowskit-Schichten fast gar kein Chlor, sondern nur noch Iod. Dabei scheint ein gewisser Chloranteil im Material sich auf die Effizienz günstig auszuwirken.

Chlorgehalt in tieferen Schichten analysiert

Nun hat ein Team am HZB Proben aus der Gruppe um Henry Snaith eingehend analysiert und aufgedeckt, wo Chlor in der Perowskit-Schicht bleibt und wo es verschwindet. Um die Verteilung von Chlor in verschiedenen Schichttiefen der Perowskit-Proben zu untersuchen, nutzten sie zwei Röntgen-Spektroskopie-Methoden an BESSY II. Mittels Hart-Röntgen-Photoelektronenspektroskopie (HAXPES) an der KMC-1 Beamline analysierten sie die Oberflächen der Perowskit-Proben und konnten dort keine Chloratome nachweisen. Die tieferen Schichten der Probe untersuchten sie mit Fluoreszenz-Röntgen-Absorptionsspektroskopie (FY-XAS): „Nahe der Grenzfläche zwischen Perowskit und dem Titandioxidsubstrat konnten wir eine höhere Konzentration von Chlor nachweisen als in der Perowskit-Schicht selbst“, erklärt Dr. David Starr, Erstautor der Publikation in Energy & Environmental Science.

Chlor steigert den Wirkungsgrad

Warum Chlor den Wirkungsgrad günstig beeinflusst, ist noch nicht ganz klar; möglicherweise mindert es die Auswirkungen von Fehlstellen und erhöht somit die Qualität der Perowskit-Schicht. „Diese Ergebnisse werden uns vielleicht zeigen, wie man bei der Herstellung die Verteilung von Chlor besser kontrollieren kann“, sagt Prof. Dr. Marcus Bär, der das HZB-Team leitet. „Das Ziel ist, die Materialzusammensetzung und Deposition gezielt zu steuern, um spezifische, gewünschte Eigenschaften zu erhalten. Wenn wir die nützliche Rolle von Chlor in Blei-haltigen Perowskiten besser verstehen, können wir vielleicht in weiteren Schritten auch das Blei durch weniger toxische Elemente ersetzen.“

Zur Publikation: Energy Environ. Sci., 2015, 8, 1609, DOI: 10.1039/c5ee00403a
Direct observation of an inhomogeneous chlorine distribution in CH3NH3PbI3_xClx layers: surface depletion and interface enrichment. David E. Starr, Golnaz Sadoughi, Evelyn Handick, Regan G. Wilks, Jan H. Alsmeier, Leonard Köhler, Mihaela Gorgoi, Henry J. Snaith and Marcus Bär

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Langzeit-Stabilität von Perowskit-Solarzellen deutlich gesteigert
    Science Highlight
    07.11.2025
    Langzeit-Stabilität von Perowskit-Solarzellen deutlich gesteigert
    Perowskit-Solarzellen sind kostengünstig in der Herstellung und liefern viel Leistung pro Fläche. Allerdings sind sie bisher noch nicht stabil genug für den Langzeit-Einsatz. Nun hat ein internationales Team unter der Leitung von Prof. Dr. Antonio Abate durch eine neuartige Beschichtung der Grenzfläche zwischen Perowskitschicht und dem Top-Kontakt die Stabilität drastisch erhöht. Dabei stieg der Wirkungsgrad auf knapp 27 Prozent, was dem aktuellen state-of-the-art entspricht. Dieser hohe Wirkungsgrad nahm auch nach 1.200 Stunden im Dauerbetrieb nicht ab. An der Studie waren Forschungsteams aus China, Italien, der Schweiz und Deutschland beteiligt. Sie wurde in Nature Photonics veröffentlicht.
  • Energie von Ladungsträgerpaaren in Kuprat-Verbindungen
    Science Highlight
    05.11.2025
    Energie von Ladungsträgerpaaren in Kuprat-Verbindungen
    Noch immer ist die Hochtemperatursupraleitung nicht vollständig verstanden. Nun hat ein internationales Forschungsteam an BESSY II die Energie von Ladungsträgerpaaren in undotiertem La₂CuO₄ vermessen. Die Messungen zeigten, dass die Wechselwirkungsenergien in den potenziell supraleitenden Kupferoxid-Schichten deutlich geringer sind als in den isolierenden Lanthanoxid-Schichten. Die Ergebnisse tragen zum besseren Verständnis der Hochtemperatur-Supraleitung bei und könnten auch für die Erforschung anderer funktionaler Materialien relevant sein.
  • Elektrokatalyse mit doppeltem Nutzen – ein Überblick
    Science Highlight
    31.10.2025
    Elektrokatalyse mit doppeltem Nutzen – ein Überblick
    Hybride Elektrokatalysatoren können beispielsweise gleichzeitig grünen Wasserstoff und wertvolle organische Verbindungen produzieren. Dies verspricht wirtschaftlich rentable Anwendungen. Die komplexen katalytischen Reaktionen, die bei der Herstellung organischer Verbindungen ablaufen, sind jedoch noch nicht vollständig verstanden. Moderne Röntgenmethoden an Synchrotronquellen wie BESSY II ermöglichen es, Katalysatormaterialien und die an ihren Oberflächen ablaufenden Reaktionen in Echtzeit, in situ und unter realen Betriebsbedingungen zu analysieren. Dies liefert Erkenntnisse, die für eine gezielte Optimierung genutzt werden können. Ein Team hat nun in Nature Reviews Chemistry einen Überblick über den aktuellen Wissensstand veröffentlicht.