Freigeist Fellowship for Tristan Petit

Dr. Tristan Petit will broaden his research on nanocarbon materials with the Freigeist Fellowship.

Dr. Tristan Petit will broaden his research on nanocarbon materials with the Freigeist Fellowship. © HZB

For his project on nanodiamond materials and nanocarbon, Dr. Tristan Petit has been awarded a Freigeist Fellowship from the VolkswagenStiftung. The grant covers a five-year period and will enable him to establish his own research team. The VolkswagenStiftung is funding with these prestigious fellowships outstanding postdocs planning original research that transcends the bounds of their own field.

Following his doctoral studies, Dr. Tristan Petit joined the HZB team of Prof. Emad Aziz supported by a post-doctoral stipend from the Alexander von Humboldt Foundation. He had already investigated surface modification of nanodiamonds while exploring their potential for biomedical applications during his doctoral research at the Diamond Sensors Laboratory (CEA) in Gif sur Yvette, France. Petit has since expanded his research interests. This is because nanodiamond materials can also exhibit catalytic effects, in particular when irradiated by sunlight. One dream is to develop synthetic nanodiamond materials for manufacturing solar fuels like methane using sunlight and carbon dioxide, thereby storing solar energy chemically. Aziz and Petit are now working on this project under the European DIACAT research programme.

As a Freigeist Fellow, Petit will investigate how nanocarbon materials in aqueous solutions interact with their environment. These interactions have hardly been studied so far, but they are essential for developing new applications and being better able to assess risks.

It is very difficult to study nanocarbon materials in aqueous solutions experimentally, though. Spectrographic methods using X-ray light can provide information about the electrochemical and photochemical processes. Petit relies on specialised setups for this such as LiXEdrom at BESSY II that were developed at HZB specifically for these kinds of experiments. He intends to use infrared spectroscopy to determine the configuration of water molecules surrounding the nanoparticles. Petit also plans to carry out sequential laser-based pump-probe measurements in order to observe ultrafast electronic processes in the nanoparticles. The methods have already proven themselves in nanocarbon solid-state experiments, but their utilisation in studying nanocarbon in liquids is new, however.

“The Freigeist Fellowship makes it possible for me to research these problems comprehensively. Once we better understand the complex interactions between nanocarbon particles in an aqueous environment, we will be able to develop a new generation of carbon-based nanomaterials for different applications – from photocatalysis of solar fuels to medical applications”, says Petit. The Freigeist Fellowship is accompanied by funding of 805,000 EUR, of which 375,000 EUR is provided by HZB in-house resources and 430,000 EUR by the VolkswagenStiftung.

As a result, there are now two Freigeist Fellows on Aziz’ team. Dr. Annika Bande also received a Freigeist Fellowship last year and has since been working at the HZB Institute for Methods of Material Development headed by Aziz.


Further information on the Freigeist Fellowships: www.volkswagenstiftung.de/freigeist-fellowships.

arö

  • Copy link

You might also be interested in

  • New HZB magazine "Lichtblick" has been published
    News
    18.09.2025
    New HZB magazine "Lichtblick" has been published
    In the new issue, we introduce our new commercial managing director. We also show how important exchange is to us: science thrives on fruitful exchange with others. But dialogue with the public is also very important to us. Art can also create enriching access to science and build bridges. All these topics are covered in the new issue of Lichtblick.
  • The Enabler - portrait of Saskia Vormfelde
    Portrait
    17.09.2025
    The Enabler - portrait of Saskia Vormfelde
    Saskia Vormfelde takes on her new role as Administrative Director in September – and she is bringing more to the table than just a knack for accounting.
  • Porous Radical Organic framework improves lithium-sulphur batteries
    Science Highlight
    15.09.2025
    Porous Radical Organic framework improves lithium-sulphur batteries
    A team led by Prof. Yan Lu, HZB, and Prof. Arne Thomas, Technical University of Berlin, has developed a material that enhances the capacity and stability of lithium-sulphur batteries. The material is based on polymers that form a framework with open pores (known as radical-cationic covalent organic frameworks or COFs). Catalytically accelerated reactions take place in these pores, firmly trapping polysulphides, which would shorten the battery life. Some of the experimental analyses were conducted at the BAMline at BESSY II.