poster prize for Laura Elisa Valle Rios student at the European Crystallographic Meeting (ECM29)

price ceremony at the ECM29

price ceremony at the ECM29

The poster contribution of Laura Elisa Valle Rios (HZB-Department Crystallography) was awarded the CrystEngComm poster price of the Royal Society of Chemistry at the 29th European Crystallographic Meeting (ECM29) in Rovinj (Croatia). Laura Elisa, a PhD student in the Marie-Curie Initial Training network KESTCELLS and the HZB Graduate School "Materials for Solar Energy Conversion" (MatSEC).

She presented results on structural properties of Kesterites (Cu2ZnSnSe4 - CZTSe) in relation to its stoichiometry deviations.

The best performances of Kesterite-based thin film solar cells with converion efficiencies of 12.6% were obtained with an absorber material quite different from the stoichiometric compound Cu2ZnSn(S,Se)4, especially with a Cu-poor/Zn-rich composition. Because the electronic properties of a semiconductor are strongly related to its crystal structure, it is of great interest to study the nature of stoichiometry deviations systematically and to connect issues such as phase existence limits.

Laura Elisa Valle Rios synthesized off-stoichiometric CZTSe powder samples by solid state reaction and studied the structural and chemical properties. Here she applied different analytical methods using also the HZB's large scale facilities BESSY II and BER II. Moreover she performed experiments at the Spallation Neutron Source (SNS) in Oakridge (US). With the results she obtained from complementary neutron and synchrotron X-ray diffraction experiments  she was able to prove  that CZTS can accomodate deviations from stoichiometry without collapse of the kesterite type structure by the formation of certain point defects. Laura Elisa could show correlations between chemical composition of the kesterite type semiconductor and intrinsic point defects and defect concentrations. Thus the crystal structure of CZTS can self-adapt to Cu-poor/Zn-rich and Cu-rich/Zn-poor compositions without any structural changes except in terms of the cation distribution.

Laura Elisa Valle Rios works at the HZB (EM-AKR) as a PhD student in the EU-funded Marie-Curie Initial Training Network KESTCELLS (Training for sustainable low cost PV technologies: development of kesterite based efficient solar cells). She is enrolled at the Freie Universtaet Berlin in the joint graduate school "Materials for Solar Energy Conversion" (MatSEC).

Susan Schorr

  • Copy link

You might also be interested in

  • Perovskite solar cells: New Young Investigator Group funded by BMBF at HZB
    News
    14.03.2025
    Perovskite solar cells: New Young Investigator Group funded by BMBF at HZB
    In the COMET-PV project, Dr Artem Musiienko aims to significantly accelerate the development of perovskite solar cells. He is using robotics and AI to analyse the many variations in the material composition of tin-based perovskites. The physicist will set up a Young Investigator Group at HZB. He will also have an affiliation with Humboldt University in Berlin, where he will gain teaching experience in preparation for a future professorship.
  • HZB-postdoc Feng Liang becomes associate Professor at Xi'an Jiaotong University
    News
    07.03.2025
    HZB-postdoc Feng Liang becomes associate Professor at Xi'an Jiaotong University
    Dr. Feng Liang has joined the HZB Institute Solar Fuels in 2021. Now, he has secured an associate professorship at the Green Hydrogen Innovation Center in the Department of Mechanical Engineering, Xi'an Jiaotong University, China. He will start to build up his research team in June 2025.
  • Innovative battery electrode made from tin foam
    Science Highlight
    24.02.2025
    Innovative battery electrode made from tin foam
    Metal-based electrodes in lithium-ion batteries promise significantly higher capacities than conventional graphite electrodes. Unfortunately, they degrade due to mechanical stress during charging and discharging cycles. A team at HZB has now shown that a highly porous tin foam is much better at absorbing mechanical stress during charging cycles. This makes tin foam an interesting material for lithium batteries.