Katalyseforschung verstärkt: Helmholtz-Zentrum Berlin ist am neu bewilligten Einstein-Zentrum für Katalyse beteiligt

Am HZB werden neue Methoden entwickelt, um die elektronische Struktur von katalytisch aktiven Molek&uuml;len zu untersuchen. </p>
<p>

Am HZB werden neue Methoden entwickelt, um die elektronische Struktur von katalytisch aktiven Molekülen zu untersuchen.

© HZB

Die Einstein-Stiftung fördert ab 2016 ein neues Einstein-Zentrum für Katalyse (EC²), an dem sich die Technische Universität Berlin (TU Berlin) und mehrere außeruniversitäre Einrichtungen aus Berlin beteiligen. Aus dem Helmholtz-Zentrum Berlin (HZB) wirkt Prof. Dr. Emad Aziz, Leiter des HZB-Instituts für Methoden der Materialforschung, am Aufbau der Einrichtung mit. Sein Team bringt insbesondere Expertise in der Analytik ultraschneller Prozesse bei katalytischen Reaktionen ein.

Katalyse ist zentrales Zukunftsthema, ob bei der Energiewende oder bei der Verarbeitung von Rohstoffen: Wenn wir in Zukunft Ressourcen effizienter und nachhaltiger nutzen wollen, sind hervorragende Katalysatoren unverzichtbar. Deshalb verstärkt auch das HZB die Katalyseforschung und arbeitet dabei gezielt mit Kooperationspartnern zusammen.

Im Einstein-Zentrum für Katalyse (EC²) sollen Methoden entwickelt werden, die einen tieferen Einblick in chemische und biologische Katalysatoren ermöglichen. Insbesondere die Dynamik von Katalyseprozessen will man damit besser verstehen. „Der Aufbau des institutionenübergreifenden Einstein-Zentrums für Katalyse ist ein echter Meilenstein für die Katalyseforschung in Berlin. Das HZB wird sich zukünftig noch stärker im Rahmen der Forschung an Energiematerialien in der Katalyseforschung engagieren“, sagt die wissenschaftliche Geschäftsführerin des HZB, Prof. Dr. Anke Kaysser-Pyzalla.

Das neue Einstein-Zentrum baut auf dem Exzellenzcluster  der TU Berlin „Unifying Concepts in Catalysis (UniCat)“ auf. Zentrale Partner des neuen Einstein-Zentrums sind neben dem HZB das Fritz-Haber-Institut der Max-Planck-Gesellschaft, das Leibniz-Institut für Molekulare Pharmakologie Berlin, das Leibniz-Institut für Analytische Wissenschaften Berlin, sowie das UniCat-BASF Joint Lab. Sprecher des neuen Einstein-Zentrums ist Prof. Dr. Matthias Drieß vom Fachgebiet Metallorganische Chemie und Anorganische Materialien der TU Berlin. „Um die Dynamik von aktiven Reaktionszentren mit hoher zeitlicher wie räumlicher Auflösung bestimmen zu können, brauchen wir das HZB mit seiner Spitzenanalytik an BESSY II als Partner“, sagt Drieß.

Das HZB-Institut für Methoden der Materialentwicklung entwickelt neue experimentelle Methoden, die Licht im Röntgenbereich oder im extremen UV-Bereich nutzen. „Damit stellen wir neue Werkzeuge bereit, um die elektronische Struktur von katalytischen Molekülen und die ultraschnellen Prozesse, die während der Katalyse ablaufen, unter realistischen Bedingungen wie Raumtemperatur oder Normaldruck zu untersuchen“, erklärt Aziz. „Auch Dr. Tristan Petit und Dr. Annika Bande, deren Gruppen durch ein Freigeist-Stipendium der Volkswagenstiftung gefördert werden, profitieren von dem großen Netzwerk zur Katalyseforschung in Berlin.“


Das neue Einstein-Zentrum soll ab Januar 2016 für zunächst fünf Jahre gefördert werden.

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • HZB-Patent zur Halbleitercharakterisierung geht in die Serienproduktion
    Nachricht
    10.10.2024
    HZB-Patent zur Halbleitercharakterisierung geht in die Serienproduktion
    Ein HZB-Team hat einen innovativen Monochromator entwickelt, der nun von einem Unternehmen produziert und vermarktet wird. Das Gerät ermöglicht es, die optoelektronischen Eigenschaften von Halbleitermaterialien kontinuierlich und rasch mit hoher Präzision zu erfassen, und zwar über einen breiten Spektralbereich vom nahen Infrarot bis ins tiefe Ultraviolett. Dabei wird Streulicht effizient unterdrückt. Die Innovation ist für die Entwicklung neuer Materialien interessant und auch einsetzbar, um industrielle Prozesse besser zu kontrollieren.
  • Wechselströme für alternatives Rechnen mit Magneten
    Science Highlight
    26.09.2024
    Wechselströme für alternatives Rechnen mit Magneten
    Eine neue Studie der Universität Wien, des Max-Planck-Instituts für Intelligente Systeme in Stuttgart und der Helmholtz-Zentren in Berlin und Dresden stellt einen wichtigen Schritt dar, Computerbauelemente weiter zu miniaturisieren und energieeffizienter zu machen. Die in der renommierten Fachzeitschrift Science Advances veröffentlichte Arbeit zeigt neue Möglichkeiten, reprogrammierbare magnetische Schaltungen zu schaffen, indem Spinwellen durch Wechselströme angeregt und bei Bedarf umgelenkt werden. Die Experimente dafür wurden an der Maxymus-Beamline an BESSY II durchgeführt.
  • BESSY II: Heterostrukturen für die Spintronik
    Science Highlight
    20.09.2024
    BESSY II: Heterostrukturen für die Spintronik
    Spintronische Bauelemente arbeiten mit magnetischen Strukturen, die durch quantenphysikalische Wechselwirkungen hervorgerufen werden. Nun hat eine Spanisch-Deutsche Kooperation Heterostrukturen aus Graphen-Kobalt-Iridium an BESSY II untersucht. Die Ergebnisse belegen, wie sich in diesen Heterostrukturen zwei erwünschte quantenphysikalische Effekte gegenseitig verstärken. Dies könnte zu neuen spintronischen Bauelementen aus solchen Heterostrukturen führen.