Catalysis research strengthened: Helmholtz-Zentrum Berlin participates in newly approved Einstein Center for Catalysis

HZB scientists develop new methods to investigate the electronic structure of catalytic molecules. </p>
<p>

HZB scientists develop new methods to investigate the electronic structure of catalytic molecules.

© HZB

The Einstein Foundation will fund the new Einstein Center for Catalysis (EC2) beginning in 2016 in which Technical University Berlin (TU Berlin) and selected non-university institutions in Berlin will be participating. Prof. Emad Aziz, head of the HZB Institute for Methods of Materials Research at Helmholtz-Zentrum Berlin will be taking part in setting up the institution. His team will be contributing particular expertise in analytics of ultrafast processes in catalytic reactions.

Catalysis is a key topic of the future, whether for the energy transition or for processing of raw materials. If we want to utilise resources more efficiently and sustainably in the future, outstanding catalysts are indispensable. HZB is therefore strengthening its catalysis research and working with collaborating partners toward specific goals.
Methods will be developed at the Einstein Center for Catalysis (EC2) that facilitate deeper investigation of chemical and biological catalysts. The dynamics of catalysis processes in particular will be better understood with these methods. “The formation of the inter-institutional Einstein Center for Catalysis is a real milestone for catalysis research in Berlin. HZB will be involved even more strongly in catalysis research on Energy Materials in the future“, says Prof. Anke Kaysser-Pyzalla, Scientific Director of HZB.

The new Einstein Center builds on the UniCat (Unifying Concepts in Catalysis) Excellence Cluster at Technische Universität Berlin (TU Berlin). Besides HZB, the main partners in the new Einstein Center are the Fritz Haber Institute of the Max Planck Society, the Leibniz Institute for Molecular Pharmacology Berlin, the Leibniz Institute for Analytical Sciences Berlin, as well as the UniCat-BASF Joint Lab. The spokesperson of the new Einstein Center is Prof. Matthias Drieß from the Organometallic Chemistry and Inorganic Materials branch of the Department of Chemistry, TU Berlin. “In order to be able to determine the dynamics of active reaction centers with a high degree of temporal as well as spatial resolution, we need HZB as a partner with its outstanding analytics at BESSY II ”, says Drieß.

The HZB Institute for Methods of Material Development develops new experimental methods that utilise light in the X-ray or extreme UV regions. “These methods permit us to make new tools available in order to investigate the electronic structure of catalytic molecules and the ultrafast processes that occur during catalysis under realistic conditions like room temperature and standard atmospheric pressure”, explains Aziz. “Dr. Tristan Petit and Dr. Annika Bande, whose groups are supported by Freigeist grants from the Volkswagen Foundation, will also benefit from the large network of catalysis research in Berlin.”

The new Einstein Center is to be funded initially for five years beginning in January 2016.

arö


You might also be interested in

  • Dynamic measurements in liquids now possible in the laboratory
    Science Highlight
    23.05.2024
    Dynamic measurements in liquids now possible in the laboratory
    A team of researchers in Berlin has developed a laboratory spectrometer for analysing chemical processes in solution - with a time resolution of 500 ps. This is of interest not only for the study of molecular processes in biology, but also for the development of new catalyst materials. Until now, however, this usually required synchrotron radiation, which is only available at large, modern X-ray sources such as BESSY II. The process now works on a laboratory scale using a plasma light source.
  • Key role of nickel ions in the Simons process discovered
    Science Highlight
    21.05.2024
    Key role of nickel ions in the Simons process discovered
    Researchers at the Federal Institute for Materials Research and Testing (BAM) and Freie Universität Berlin have discovered the exact mechanism of the Simons process for the first time. The interdisciplinary research team used the BESSY II light source at the Helmholtz Zentrum Berlin for this study.

  • Freeze casting - a guide to creating hierarchically structured materials
    Science Highlight
    25.04.2024
    Freeze casting - a guide to creating hierarchically structured materials
    Freeze casting is an elegant, cost-effective manufacturing technique to produce highly porous materials with custom-designed hierarchical architectures, well-defined pore orientation, and multifunctional surface structures. Freeze-cast materials are suitable for many applications, from biomedicine to environmental engineering and energy technologies. An article in "Nature Reviews Methods Primer" now provides a guide to freeze-casting methods that includes an overview on current and future applications and highlights characterization techniques with a focus on X-ray tomoscopy.