Gemeinsame Plattform für die Makromolekulare Kristallographie an europäischen Synchrotronen
Regelmäßig gibt es einen Austausch der verantwortlichen Wissenschaftlerinnen und Wissenschafter aus verschiedenen Synchrotronen, um mit MXcuBE ein nutzerfreundliches System zu entwickeln.
Hier: Treffen vom 1. bis 2. Dezember 2015 an Alba, Spanien. Foto: Jordi Juanhuix/ALBA
Um Biostrukturen und damit die Baupläne des Lebens zu entschlüsseln, nutzen Forscher das hochintensive Röntgenlicht von Synchrotronstrahlungsquellen. Seit 2012 gibt es eine Kooperationsvereinbarung, um an mehreren europäischen Quellen gemeinsame Software-Standards zu etablieren. Das Ziel: Die acht beteiligten Synchrotrone wollen an den 30 Experimentierplätzen für die Makromolekulare Kristallographie nutzerfreundliche, standardisierte Bedingungen schaffen, die das Arbeiten für die Forschergruppen erleichtern. Im neuen Projekt „MXCuBE3“ wird die vorhandene Software-Plattform an neuste technologische Entwicklungen angepasst.
In den letzten Jahren wurden viele Beamlines für die Makromolekulare Kristallographie an den Synchrotronen aufwendig modernisiert. Unter anderem kamen neue Experimentiermöglichkeiten und neuste hochauflösende Detektoren hinzu. Nun muss die gemeinsame Software-Plattform MXCuBE2 angepasst werden, um mit dieser Entwicklung Schritt halten zu können. Das Kuratorium hat sich dafür ausgesprochen, eine neue, generalüberholte Version zu entwickeln. Mithilfe der Softwarelösung MXCuBE3 sollen sich Experimente über eine Webapplikationen steuern lassen. Das Upgrade sichert außerdem, dass MXCuBE3 auch bei zukünftigen Betriebssystemen auf den Computern läuft, und verbessert die Anbindung an die Experiment-Datenbank ISPyB.
An der Kooperation beteiligt sind das Helmholtz-Zentrum Berlin, die ESRF, das European Molecular Biology Laboratory, Global Phasing Limited, MAX-VI-Lab in Schweden, SOLEIL in Frankreich, ALBA in Spanien und das DESY.
Einen ausführlichen Bericht finden Sie im Magazin der ESRF.
(sz)
https://www.helmholtz-berlin.de/pubbin/news_seite?nid=14380;sprache=en/1000
- Link kopieren
-
Iridiumfreie Katalysatoren für die saure Wasserelektrolyse untersucht
Wasserstoff wird künftig eine wichtige Rolle spielen, als Brennstoff und als Rohstoff für die Industrie. Um jedoch relevante Mengen an Wasserstoff zu produzieren, muss Wasserelektrolyse im Multi-Gigawatt-Maßstab machbar werden. Ein Engpass sind die benötigten Katalysatoren, insbesondere Iridium ist ein extrem seltenes Element. Eine internationale Kooperation hat daher Iridiumfreie Katalysatoren für die saure Wasserelektrolyse untersucht, die auf dem Element Kobalt basieren. Durch Untersuchungen, unter anderem am LiXEdrom an der Berliner Röntgenquelle BESSY II, konnten sie Prozesse bei der Wasserelektrolyse in einem Kobalt-Eisen-Blei-Oxid-Material als Anode aufklären. Die Studie ist in Nature Energy publiziert.
-
Selbstorganisierte Monolage verbessert auch bleifreie Perowskit-Solarzellen
Zinn-Perowskit-Solarzellen sind nicht nur ungiftig, sondern auch potenziell stabiler als bleihaltige Perowskit-Solarzellen. Allerdings sind sie auch deutlich weniger effizient. Nun gelang einem internationalen Team eine deutliche Verbesserung: Das Team identifizierte chemische Verbindungen, die von selbst eine molekulare Schicht bilden, welche sehr gut zur Gitterstruktur von Zinn-Perowskiten passt. Auf dieser Monolage lässt sich Zinn-Perowskit mit hervorragender optoelektronischer Qualität aufwachsen.
-
Schriftrollen aus buddhistischem Schrein an BESSY II virtuell entrollt
In der mongolischen Sammlung des Ethnologischen Museums der Staatlichen Museen zu Berlin befindet sich ein einzigartiger Gungervaa-Schrein. Der Schrein enthält auch drei kleine Röllchen aus eng gewickelten langen Streifen, die in Seide gewickelt und verklebt sind. Ein Team am HZB konnte die Schrift auf den Streifen teilweise sichtbar machen, ohne die Röllchen durch Aufwickeln zu beschädigen. Mit 3D-Röntgentomographie erstellten sie eine Datenkopie des Röllchens und verwendeten im Anschluss ein mathematisches Verfahren, um den Streifen virtuell zu entrollen. Das Verfahren wird auch in der Batterieforschung angewandt.