Energie-Materialien: Dr. Catherine Dubourdieu baut Institut "Funktionale Oxide für die energieeffiziente Informationstechnologie" auf

Dr. Catherine Dubourdieu ist Expertin für die Integration funktionaler Oxide auf Halbleitern. Foto: privat

Dr. Catherine Dubourdieu ist Expertin für die Integration funktionaler Oxide auf Halbleitern. Foto: privat

Das Helmholtz-Zentrum Berlin (HZB) stärkt seine Energie-Material-Forschung und baut ein neues Institut auf. Dank der Helmholtz-Rekrutierungsinitiative konnte das HZB die renommierte Forscherin Catherine Dubourdieu als Institutsleiterin gewinnen. In dem neu gegründeten Institut „Funktionale Oxide für die energieeffiziente Informationstechnologie" erforscht sie Dünnschichten aus Metalloxiden, die besonders interessante Kandidaten für die Informationstechnologie der Zukunft sind. Frau Dubourdieu wechselte vom Institut „Nanotechnologies de Lyon“ des CNRS und arbeitet seit dem 11. April 2016 am HZB.

Die Physikerin gilt als internationale Expertin auf diesem Gebiet. Nach Stationen in Frankreich und den USA wird Dr. Catherine Dubourdieu nun am HZB an funktionalen Oxiden forschen. Darunter versteht man Dünnschichten aus Metalloxiden, die als besonders interessante Materialklasse für energieeffiziente Bauelemente gelten. Stapelt man dünne Schichten aus verschiedenen Metalloxiden übereinander, zeigen diese „Sandwich-Strukturen“ ganz neue mechanische, optische und elektromagnetische Eigenschaften.

An der Synchrotronquelle BESSY II steht Dr. Catherine Dubourdieu eine große Vielfalt an Instrumenten für die Energie-Material-Forschung zur Verfügung. Sie sind Werkzeuge, um Prozesse in Energie-Materialien in situ or in operando zu analysieren. Insbesondere wird Frau Dubourdieu eine eigene Synthese- und Analysekammer im EMIL-Labor (Energy Materials In situ Laboratory) installieren. Die Physikerin ist auch am Aufbau der Helmholtz Energy Materials Foundry (HEMF) am HZB beteiligt. Dort werden modernste Labore für die Materialsynthese entstehen, die auch von externen Forscherinnen und Forschern genutzt werden können.

Dr. Catherine Dubourdieu wird eng mit anderen HZB-Teams zusammenarbeiten, die Materialsysteme für die Informationstechnologie untersuchen, vor allem mit dem Institut „Quantenphänomene in neuen Materialien“ und der Abteilung „Neue Materialien für grüne Spintronik“.

Ihr Antrittsvortrag findet am 23. Juni um 13 Uhr am Lise-Meitner-Campus Wannsee statt.

Zur Person:

Dr. Catherine Dubourdieu hat in Grenoble studiert und in Physik promoviert. Nach einem Postdoc-Aufenthalt am Stevens Institute of Technology in Hoboken (New Jersey) forschte sie bis 2009 am Laboratoire des Matériaux et du Génie Physique (LMGP) des CNRS in Grenoble. Zwischen 2009 und 2012 war sie Gastforscherin IBM T.J. Watson Research Center in Yorktown Heights (NY, USA). Dort arbeitete sie auf dem Gebiet der monolithischen Integration von ferroelektrischen Oxiden in Silizium mit dem Ziel, energiesparende logische Bauelemente herzustellen. Im Juni 2012 wechselte sie an das Institut „Nanotechnologies de Lyon“ des CNRS und forschte weiter an Projekte zu funktionalen Oxiden.

Über die Helmholtz-Rekrutierungsinitiative:
Mit der Helmholtz-Rekrutierungsinitiative will die Forschungsorganisation gemeinsame Berufungen mit Universitäten stärken und herausragende Wissenschaftlerinnen und Wissenschaftler fördern. Auswahlkriterien sind u.a. eine international herausragende Exzellenz und ein internationaler Hintergrund. Die Hälfte der geförderten Personen sind Wissenschaftlerinnen.

(arö/sz)

  • Link kopieren

Das könnte Sie auch interessieren

  • Elektrokatalyse mit doppeltem Nutzen – ein Überblick
    Science Highlight
    31.10.2025
    Elektrokatalyse mit doppeltem Nutzen – ein Überblick
    Hybride Elektrokatalysatoren können beispielsweise gleichzeitig grünen Wasserstoff und wertvolle organische Verbindungen produzieren. Dies verspricht wirtschaftlich rentable Anwendungen. Die komplexen katalytischen Reaktionen, die bei der Herstellung organischer Verbindungen ablaufen, sind jedoch noch nicht vollständig verstanden. Moderne Röntgenmethoden an Synchrotronquellen wie BESSY II ermöglichen es, Katalysatormaterialien und die an ihren Oberflächen ablaufenden Reaktionen in Echtzeit, in situ und unter realen Betriebsbedingungen zu analysieren. Dies liefert Erkenntnisse, die für eine gezielte Optimierung genutzt werden können. Ein Team hat nun in Nature Reviews Chemistry einen Überblick über den aktuellen Wissensstand veröffentlicht.
  • Erfolgreicher Masterabschluss zu IR-Thermografie an Solarfassaden
    Nachricht
    22.10.2025
    Erfolgreicher Masterabschluss zu IR-Thermografie an Solarfassaden
    Wir freuen uns sehr und gratulieren unserer studentischen Mitarbeiterin Luca Raschke zum erfolgreich abgeschlossenen Masterstudium der Regenerativen Energien an der Hochschule für Technik und Wirtschaft Berlin – und das mit Auszeichnung!
  • BESSY II: Phosphorketten – ein 1D-Material mit 1D elektronischen Eigenschaften
    Science Highlight
    21.10.2025
    BESSY II: Phosphorketten – ein 1D-Material mit 1D elektronischen Eigenschaften
    Erstmals ist es einem Team an BESSY II gelungen, experimentell eindimensionale elektronische Eigenschaften in Phosphor nachzuweisen. Die Proben bestanden aus kurzen Ketten aus Phosphoratomen, die sich auf einem Silbersubstrat selbst organisiert in bestimmten Winkeln bilden. Durch eine raffinierte Auswertung gelang es, die Beiträge von unterschiedlich ausgerichteten Ketten voneinander zu trennen und zu zeigen, dass die elektronischen Eigenschaften tatsächlich einen eindimensionalen Charakter besitzen. Berechnungen zeigten darüber hinaus, dass ein spannender Phasenübergang zu erwarten ist. Während das Material aus einzelnen Ketten halbleitend ist, wäre eine sehr dichte Kettenstruktur metallisch.