Zwei Freigeist-Fellows am HZB verflechten ihre Forschung

Fabian Weber (rechts) untersucht nun im Team von Dr. Annika Bande (links) die Dynamik von Elektronen-Prozessen in Graphen-Oxid-Quantenpunkten. Solche Quantenpunkte könnten als Katalysatoren die solare Wasserspaltung effizienter machen. Mit den theoretischen Modellierungen von Weber lassen sich aus den experimentellen Daten der Gruppe um Dr. Tristan Petit sehr viel mehr Informationen gewinnen.

Fabian Weber (rechts) untersucht nun im Team von Dr. Annika Bande (links) die Dynamik von Elektronen-Prozessen in Graphen-Oxid-Quantenpunkten. Solche Quantenpunkte könnten als Katalysatoren die solare Wasserspaltung effizienter machen. Mit den theoretischen Modellierungen von Weber lassen sich aus den experimentellen Daten der Gruppe um Dr. Tristan Petit sehr viel mehr Informationen gewinnen. © HZB

Eine erste Berechnung zeigt, wie sich die Elektronendichte über einem Graphen-Oxid-Nanopartikel in Lösung verändert: In den roten Bereichen ist die Elektronendichte unterdurchschnittlich, während sie in den blauen Regionen überdurchschnittlich groß ist. Das Graphen-Partikel ist aus Kohlenstoffatomen (schwarz) gebildet, an die stellenweise Sauerstoff (rot) oder Wasserstoff (weiß) andockt.

Eine erste Berechnung zeigt, wie sich die Elektronendichte über einem Graphen-Oxid-Nanopartikel in Lösung verändert: In den roten Bereichen ist die Elektronendichte unterdurchschnittlich, während sie in den blauen Regionen überdurchschnittlich groß ist. Das Graphen-Partikel ist aus Kohlenstoffatomen (schwarz) gebildet, an die stellenweise Sauerstoff (rot) oder Wasserstoff (weiß) andockt. © Fabian Weber

Am HZB-Institut für Methoden der Materialentwicklung forschen zwei Freigeist-Fellows, die von der VolkswagenStiftung gefördert werden: Die theoretische Chemikerin Dr. Annika Bande modelliert schnelle Elektronen-Prozesse und Dr. Tristan Petit untersucht Nanoteilchen aus Kohlenstoff. Nun konnte Annika Bande mit einem  Modulantrag bei der VolkswagenStiftung zusätzlich 150.000 Euro für eine weitere dreijährige Doktorandenstelle einwerben. Die Doktorarbeit wird beide Freigeist-Vorhaben miteinander verknüpfen.

Der Doktorand Fabian Weber arbeitet in der Theoriegruppe von Annika Bande und soll in den nächsten drei Jahren den Elektronentransfer in einem Materialsystem berechnen, das Tristan Petit und sein Team experimentell untersuchen. „Wir konzentrieren uns auf eine besondere Klasse von so genannten Quantenpunkten aus Graphen-Oxid-Nanoteilchen“, sagt Weber. Die Gruppe um Petit wird Nano-Graphen-Oxide mit verschiedenen spektroskopischen Methoden analysieren.

Katalysatoren für die Solare Wasserstofferzeugung

Denn Nanopartikel aus Graphen-Oxiden gelten als gute Katalysatoren, auch um mit Sonnenenergie Wasser aufzuspalten und Wasserstoff zu erzeugen. Wasserstoff ist ein vielseitiger Energieträger, der als Brennstoff nutzbar ist oder in einer Brennstoffzelle umweltfreundlich Strom erzeugen kann.

Tiefere Einsichten in das System

Mithilfe der theoretischen Modellierungen können die experimentellen Daten zu Nano-Graphen-Oxiden deutlich mehr Informationen liefern, bis hin zu neuen Einblicken in die ultraschnelle Dynamik bei den Wasserstoffbrückenbindungen. „Dabei gehen wir zunächst von bestehenden Theorien aus, und schauen uns an, wie wir damit modellieren können, was bei der Übertragung von Elektronen während einer katalytischen Reaktion genau geschieht“, erklärt Annika Bande. „Bei diesem Forschungsprojekt können wir unsere Ideen direkt mit den experimentellen Befunden abgleichen und das System besser verstehen lernen. Außerdem handelt es sich um ein Thema von großer Relevanz, nicht nur für die Grundlagenforschung, sondern auch für die künftige Energieversorgung unserer Gesellschaft.“

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Ernst-Eckhard-Koch-Preis und Innovationspreis Synchrotronstrahlung 2025
    Nachricht
    05.12.2025
    Ernst-Eckhard-Koch-Preis und Innovationspreis Synchrotronstrahlung 2025
    Der Freundeskreis des HZB zeichnete auf dem 27. Nutzertreffen BESSY@HZB die Dissertation von Dr. Enggar Pramanto Wibowo (Friedrich-Alexander-Universität Erlangen-Nürnberg) aus.
    Darüber hinaus wurde der Europäische Innovationspreis Synchrotronstrahlung 2025 an Prof. Tim Salditt (Universität Göttingen) sowie an die Professoren Danny D. Jonigk und Maximilian Ackermann (beide, Universitätsklinikum der RWTH Aachen) verliehen. 
  • Gute Aussichten für Zinn-Perowskit-Solarzellen
    Science Highlight
    03.12.2025
    Gute Aussichten für Zinn-Perowskit-Solarzellen
    Perowskit-Solarzellen gelten weithin als die Photovoltaik-Technologie der nächsten Generation. Allerdings sind Perowskit-Halbleiter langfristig noch nicht stabil genug für den breiten kommerziellen Einsatz. Ein Grund dafür sind wandernde Ionen, die mit der Zeit dazu führen, dass das Halbleitermaterial degradiert. Ein Team des HZB und der Universität Potsdam hat nun die Ionendichte in vier verschiedenen Perowskit-Halbleitern untersucht und dabei erhebliche Unterschiede festgestellt. Eine besonders geringe Ionendichte wiesen Zinn-Perowskit-Halbleiter auf, die mit einem alternativen Lösungsmittel hergestellt wurden – hier betrug die Ionendichte nur ein Zehntel im Vergleich zu Blei-Perowskit-Halbleitern. Damit könnten Perowskite auf Zinnbasis ein besonders großes Potenzial zur Herstellung von umweltfreundlichen und besonders stabilen Solarzellen besitzen.
  • Synchrotron-strahlungsquellen: Werkzeugkästen für Quantentechnologien
    Science Highlight
    01.12.2025
    Synchrotron-strahlungsquellen: Werkzeugkästen für Quantentechnologien
    Synchrotronstrahlungsquellen erzeugen hochbrillante Lichtpulse, von Infrarot bis zu harter Röntgenstrahlung, mit denen sich tiefe Einblicke in komplexe Materialien gewinnen lassen. Ein internationales Team hat nun im Fachjournal Advanced Functional Materials einen Überblick über Synchrotronmethoden für die Weiterentwicklung von Quantentechnologien veröffentlicht: Anhand konkreter Beispiele zeigen sie, wie diese einzigartigen Werkzeuge dazu beitragen können, das Potenzial von Quantentechnologien wie z. B. Quantencomputing zu erschließen, Produktionsbarrieren zu überwinden und den Weg für zukünftige Durchbrüche zu ebnen.