Nanotechnologie für Energie-Materialien: Elektroden wie Blattadern

SEM – Abbildung eines metallischen Nano Netzwerks in (links) periodischer  Aufbau und  eine optische Abbildung einer fraktalen Struktur (rechts).

SEM – Abbildung eines metallischen Nano Netzwerks in (links) periodischer Aufbau und eine optische Abbildung einer fraktalen Struktur (rechts). © M. Giersig/HZB

Nano-dimensionierte Metalldrähte finden zunehmend Interesse als leitfähige Elemente für die Herstellung transparenter Elektroden. Zum Einsatz kommen solche transparenten Elektroden in Solarzellen oder Touchscreen-Panels. Zu den wichtigsten Parametern einer Elektrode für die Anwendung in der Photovoltaik gehört neben einer hohen elektrischen Leitfähigkeit eine exzellente optische Durchlässigkeit. Ein internationales Team um den HZB-Wissenschaftler Prof. Dr. Michael Giersig hat kürzlich demonstriert, dass metallische Netze, die fraktal-ähnliche Nanostrukturen besitzen, andere metallische Netze in ihrer Nützlichkeit für die genannten Anwendungen übertreffen. Diese Ergebnisse wurden jetzt in der jüngsten Ausgabe des renommierten Journals Nature Communications veröffentlicht.

Die Neuerung basiert auf der Realisierung sogenannter quasi-fraktaler Nanostrukturen. Sie haben Ähnlichkeiten mit den hierarchischen Netzwerken der Adern in Blättern. Giersigs Team konnte zeigen, dass metallische Netze mit derartigen Strukturen eine Optimierung der Elektrodenstruktur ermöglichen. Sie kombinieren eine hervorragende Flächenabdeckung bei zugleich gleichmäßiger Stromdichte mit einem minimalen Gesamtwiderstand.  Zudem wiesen sie nach, dass die von der Natur inspirierten Netzwerke die Eigenschaften herkömmlicher Indiumzinnoxid (ITO) -Schichten übertreffen können. In den Experimenten an künstlich hergestellten Elektroden-Netzwerken unterschiedlichen Aufbaus zeigte das Team, dass nicht periodische hierarchische Strukturen im Vergleich zu periodischen Strukturen einen niedrigeren Schichtwiderstand sowie eine sehr gute optische Durchlässigkeit aufweisen. Das führt zu einer erhöhten Ausgangsleistung für photovoltaische Bauelemente.

„Auf der Grundlage unserer Studien konnten wir eine kostengünstige transparente Metallelektrode entwickeln“, sagt Giersig: „Wir erhalten sie durch Integration von zwei Silber-Netzwerken: Ein Silber-Netzwerk, das mit einer hohen Maschenbreite und Mikrometer dicken Hauptleitungen aufgebracht ist, dient als `Autobahn´ für Elektronen, auf der der elektrische Strom über makroskopische Distanzen transportiert wird.“ Daneben dienen weitere, statistisch verteilte Nanodraht-Netzwerke als lokale Leiter, um die Flächen zwischen den großen Maschen abzudecken. „Diese kleineren Netzwerke fungieren neben den Autobahnen als `Landstraßen´, die den Stromtransport homogenisieren, Brechungseffekte ermöglichen und damit die Transparenz über die klassischen Schattierungsgrenze hinaus verbessern“, so Giersig: „Solarzellen auf der Grundlage dieser Elektrode zeigen eine erwartungsgemäß hohe Effizienz.“

Zur Publikation: Optimization of hierarchical structure and nanoscale-enabled plasmonic refraction for window electrodes in photovoltaics; Nature Communications, 7, 12825; doi:10.1038/ncomms12825

red./HS

  • Link kopieren

Das könnte Sie auch interessieren

  • Elektrokatalyse mit doppeltem Nutzen – ein Überblick
    Science Highlight
    31.10.2025
    Elektrokatalyse mit doppeltem Nutzen – ein Überblick
    Hybride Elektrokatalysatoren können beispielsweise gleichzeitig grünen Wasserstoff und wertvolle organische Verbindungen produzieren. Dies verspricht wirtschaftlich rentable Anwendungen. Die komplexen katalytischen Reaktionen, die bei der Herstellung organischer Verbindungen ablaufen, sind jedoch noch nicht vollständig verstanden. Moderne Röntgenmethoden an Synchrotronquellen wie BESSY II ermöglichen es, Katalysatormaterialien und die an ihren Oberflächen ablaufenden Reaktionen in Echtzeit, in situ und unter realen Betriebsbedingungen zu analysieren. Dies liefert Erkenntnisse, die für eine gezielte Optimierung genutzt werden können. Ein Team hat nun in Nature Reviews Chemistry einen Überblick über den aktuellen Wissensstand veröffentlicht.
  • Erfolgreicher Masterabschluss zu IR-Thermografie an Solarfassaden
    Nachricht
    22.10.2025
    Erfolgreicher Masterabschluss zu IR-Thermografie an Solarfassaden
    Wir freuen uns sehr und gratulieren unserer studentischen Mitarbeiterin Luca Raschke zum erfolgreich abgeschlossenen Masterstudium der Regenerativen Energien an der Hochschule für Technik und Wirtschaft Berlin – und das mit Auszeichnung!
  • BESSY II: Phosphorketten – ein 1D-Material mit 1D elektronischen Eigenschaften
    Science Highlight
    21.10.2025
    BESSY II: Phosphorketten – ein 1D-Material mit 1D elektronischen Eigenschaften
    Erstmals ist es einem Team an BESSY II gelungen, experimentell eindimensionale elektronische Eigenschaften in Phosphor nachzuweisen. Die Proben bestanden aus kurzen Ketten aus Phosphoratomen, die sich auf einem Silbersubstrat selbst organisiert in bestimmten Winkeln bilden. Durch eine raffinierte Auswertung gelang es, die Beiträge von unterschiedlich ausgerichteten Ketten voneinander zu trennen und zu zeigen, dass die elektronischen Eigenschaften tatsächlich einen eindimensionalen Charakter besitzen. Berechnungen zeigten darüber hinaus, dass ein spannender Phasenübergang zu erwarten ist. Während das Material aus einzelnen Ketten halbleitend ist, wäre eine sehr dichte Kettenstruktur metallisch.