User research at BESSY II: How water moves glass

A new generation of sensors: The scales of the petrified cone move upward against gravity, and on drying back to their starting positions. </p>
<p>

A new generation of sensors: The scales of the petrified cone move upward against gravity, and on drying back to their starting positions.

© WZS

In the realm of plants, capillary forces are a widely observed impetus for actuation. They are the physical basis for the expansion of porous materials during uptake of fluid. Such materials include the cones of conifers with their readily observable movement during drying or wetting. Scientists at the Chair of Biogenic Polymers of the Technical University Munich, located at the Science Center Straubing, have succeeded in retaining this plant-derived movement when the respective plant has been replaced by an artificial petrification process. Elaborate analyses at the synchrotron source BESSY II in Berlin showed that the internal structure of the pine cone was retained. Thereby, they laid the foundations for a new generation of sensoric materials.

"For the first time we applied a previously developed and refined 'bio-templating' process to create materials with a structure-based functionality- in cooperation with the Institute of Physics of the Austrian Montanuniversitaet Leoben and the Max-Planck-Institute for Colloids and Interfaces in Potsdam", said Dr. Daniel Van Opdenbosch, who is working at the Science Center Straubing. With this approach, one can artificially petrify pine cones, completely transforming the biological components into the technical material silica glass. Elaborate analyses at the synchrtoron source BESSY II in Berlin showed that the internal structure of the pine cone was retained. Crucially, it was petrified completely and accurately – down to the smallest hierarchical level of only millionths of millimeters.

Van Opdenbosch: "We could induce the obtained samples to move in a similar manner as their biological originals during the uptake of moisture. The scales of the petrified cones move upward against gravity, and on drying back to their starting positions."

The scientists hope that the precise templating of plant structures, and the corresponding retention of their characteristic properties, will be a pathway for the development of functional materials. Based on the current results, they say that the preparation of porous ceramic multilayer-sensors is possible with comparatively low expenditure. Such novel sensors react to changes in moisture with angular movement. They could therefore be used to measure, switch or control in chemically or physically aggressive environments. Conventional bimetal or other bilayer actuators are, due to their composition of metals or polymers, prone to corrosion through acid- or base attacks, as well as oxidative, thermal or physical degradation. Against all of these factors, ceramic oxides, such as silica glass, are particularly resistant. 

The project "Hierarchically structured porous ceramics and composites from nanocasting of plant cell walls" was carried out in the frame of the Priority Program 1420 "Biomimetic Materials Research: Functionality by Hierarchical Structuring of Materials" funded by the German Science Community (Deutsche Forschungsgemeinschaft).

More information at the news site of WZS

The scientists published their work in the journal "Advanced Materials" (May 6th 2016, DOI-number 10.1002/adma.201600117).

TU München/WZS

  • Copy link

You might also be interested in

  • Ernst Eckhard Koch Prize and Innovation Award on Synchrotron Radiation 2025
    News
    05.12.2025
    Ernst Eckhard Koch Prize and Innovation Award on Synchrotron Radiation 2025
    At the 27th BESSY@HZB User Meeting, the Friends of HZB honoured the dissertation of Dr Enggar Pramanto Wibowo (Friedrich-Alexander University Erlangen-Nuremberg). The Innovation Award on Synchrotron Radiation 2025 went to Prof. Tim Salditt (Georg-August-University Göttingen) and Professors Danny D. Jonigk and Maximilian Ackermann (both, University Hospital of RWTH Aachen University). 
  • Synchrotron radiation sources: toolboxes for quantum technologies
    Science Highlight
    01.12.2025
    Synchrotron radiation sources: toolboxes for quantum technologies
    Synchrotron radiation sources generate highly brilliant light pulses, ranging from infrared to hard X-rays, which can be used to gain deep insights into complex materials. An international team has now published an overview on synchrotron methods for the further development of quantum materials and technologies in the journal Advanced Functional Materials: Using concrete examples, they show how these unique tools can help to unlock the potential of quantum technologies such as quantum computing, overcome production barriers and pave the way for future breakthroughs.
  • Peat as a sustainable precursor for fuel cell catalyst materials
    Science Highlight
    25.11.2025
    Peat as a sustainable precursor for fuel cell catalyst materials
    Iron-nitrogen-carbon catalysts have the potential to replace the more expensive platinum catalysts currently used in fuel cells. This is shown by a study conducted by researchers from the Helmholtz-Zentrum Berlin (HZB), Physikalisch-Technische Bundesanstalt (PTB) and universities in Tartu and Tallinn, Estonia. At BESSY II, the team observed the formation of complex microstructures within various samples. They then analysed which structural parameters were particularly important for fostering the preferred electrochemical reactions. The raw material for such catalysts is well decomposed peat.