HZB und ANSTO erweitern ihr Memorandum zur wissenschaftlichen Zusammenarbeit

<span class="Beschriftung1"><span>ANSTO: Adi Paterson, Simone Richter, HZB: Prof Anke Kaysser-Pyzalla und Thomas Frederking (v.l.n.r.). </span></span>

ANSTO: Adi Paterson, Simone Richter, HZB: Prof Anke Kaysser-Pyzalla und Thomas Frederking (v.l.n.r.). © ANSTO

Gemeinsam die Energie-Material-Forschung vorantreiben

Die Verantwortlichen des HZB und der Australian Nuclear Science and Technology Organisation (ANSTO) haben ihr Memorandum of Understanding deutlich erweitert, das seit 2015 zwischen beiden Einrichtungen besteht. Insbesondere wollen sie die Zusammenarbeit im Bereich der Energie-Material-Forschung weiter verstärken.

Das Memorandum umfasst Vereinbarungen zum Austausch von Personal, zu Fortbildungen und zum gegenseitigen Zugang zu Instrumenten an den Großgeräten von ANSTO und dem HZB. Das Australische Forschungszentrum ANSTO liegt in der Nähe von Sydney und betreibt eine Synchrotronquelle und andere Infrastrukturen, darunter auch den Forschungsreaktor OPAL und ein Zentrum für Neutronenstreuung. Von der Berliner Neutronenquelle BER II, die Ende 2019 abgeschaltet wird, übernimmt ANSTO das BioRef-Reflektometer, das Forschung an weicher Materie und Fest-Flüssig-Grenzflächen ermöglicht. Unter dem Namen „Spatz“ wird es ab 2018 der Nutzergemeinschaft zur Verfügung stehen. ANSTO ist auch auf dem Feld der Beschleunigerforschung aktiv, einem Gebiet, auf dem auch das HZB international sehr sichtbar ist.  

Auch mit weiteren australischen Spitzeneinrichtungen hat das HZB die Kooperation verstärkt. So hat die renommierte Monash-Universität im Sommer 2016 drei HZB-Wissenschaftler aus dem Bereich der Energie-Material-Forschung zu außerplanmäßigen Professoren ernannt.

Mehr Informationen zu ANSTO : http://www.ansto.gov.au

 

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • BESSY II: Phosphorketten – ein 1D-Material mit 1D elektronischen Eigenschaften
    Science Highlight
    21.10.2025
    BESSY II: Phosphorketten – ein 1D-Material mit 1D elektronischen Eigenschaften
    Erstmals ist es einem Team an BESSY II gelungen, experimentell eindimensionale elektronische Eigenschaften in einem Material nachzuweisen. Die Proben bestanden aus kurzen Ketten aus Phosphoratomen, die sich auf einem Silbersubstrat selbst organisiert in bestimmten Winkeln bilden. Durch eine raffinierte Auswertung gelang es, die Beiträge von unterschiedlich ausgerichteten Ketten voneinander zu trennen und zu zeigen, dass die elektronischen Eigenschaften tatsächlich einen eindimensionalen Charakter besitzen. Berechnungen zeigten darüber hinaus, dass ein spannender Phasenübergang zu erwarten ist. Während das Material aus einzelnen Ketten halbleitend ist, wäre eine sehr dichte Kettenstruktur metallisch.
  • Ein innerer Kompass für Meereslebewesen im Paläozän
    Science Highlight
    20.10.2025
    Ein innerer Kompass für Meereslebewesen im Paläozän
    Vor Jahrmillionen produzierten einige Meeresorganismen mysteriöse Magnetpartikel von ungewöhnlicher Größe, die heute als Fossilien in Sedimenten zu finden sind. Nun ist es einem internationalen Team gelungen, die magnetischen Domänen auf einem dieser „Riesenmagnetfossilien” mit einer raffinierten Methode an der Diamond-Röntgenquelle zu kartieren. Ihre Analyse zeigt, dass diese Partikel es den Organismen ermöglicht haben könnten, winzige Schwankungen sowohl in der Richtung als auch in der Intensität des Erdmagnetfelds wahrzunehmen. Dadurch konnten sie sich verorten und über den Ozean navigieren. Die neue Methode eignet sich auch, um zu testen, ob bestimmte Eisenoxidpartikel in Marsproben tatsächlich biogenen Ursprungs sind.
  • Was vibrierende Moleküle über die Zellbiologie verraten
    Science Highlight
    16.10.2025
    Was vibrierende Moleküle über die Zellbiologie verraten
    Mit Infrarot-Vibrationsspektroskopie an BESSY II lassen sich hochaufgelöste Karten von Molekülen in lebenden Zellen und Zellorganellen in ihrer natürlichen wässrigen Umgebung erstellen, zeigt eine neue Studie von einem Team aus HZB und Humboldt-Universität zu Berlin. Die Nano-IR-Spektroskopie mit SNOM an der IRIS-Beamline eignet sich, um winzige biologische Proben zu untersuchen und Infrarotbilder der Molekülschwingungen mit Nanometer-Auflösung zu erzeugen. Es ist sogar möglich, 3D-Informationen, also Infrarot-Tomogramme, aufzuzeichnen. Um das Verfahren zu testen, hat das Team Fibroblasten auf einer hochtransparenten SiC-Membran gezüchtet und in vivo untersucht. Die Methode ermöglicht neue Einblicke in die Zellbiologie.