PVcomB will help mass-produce the raw photovoltaic materials used in Wysips® technology

A Wysips&reg; component can be integrated into a watch and extend its battery life. </p>
<p>

A Wysips® component can be integrated into a watch and extend its battery life.

© Sunpartner Technologies

Sunpartner Technologies and Helmholtz-Zentrum Berlin sign license agreement

The French company Sunpartner Technologies has been developing innovative solar solutions for nearly 10 years. One of these is Wysips,® an invisible or transparent photovoltaic film that transforms any surface into a solar panel that can generate electricity using the sun’s light. To create Wysips® Crystal and Wysips® Reflect, Sunpartner Technologies paired with the German research centre Helmholtz-Zentrum Berlin (HZB) to develop a special solar material that could be integrated into the company’s technology.

The Wysips® Crystal component is an ultra-thin, transparent glass that combines photovoltaic material with an optical system adapted to display screens like those used in cell phones and connected watches. The component provides the device with a constant power reserve, ensures that certain applications work properly, and independently powers certain operations. For example, exposing a phone to the sun for three minutes will give you one minute of call time.

The goal of Wysips® Reflect is to make connected watches last as long as possible in between recharges. It extends battery life by up to 50% on products it has been applied to, depending on product energy use. The component is completely invisible and can be integrated into a digital or analog watch without affecting its design.

The Competence Centre Thin-Film- and Nanotechnology for Photovoltaics Berlin (PVcomB) at Helmholtz-Zentrum Berlin (HZB) is a trusted supplier of photovoltaic cells and was involved in developing one of the key building blocks in these two Wysips® components: a special photovoltaic material compatible with the transparency process developed by Sunpartner Technologies.

HZB relied on Sunpartner Technologies’ specifications to determine the stacking order that makes up the special photovoltaic material, the quality and thickness of the glass substrate, the formats, and the tolerance levels for cleanness and dust. The result is a turnkey solution, called a “photovoltaic stack,” that Sunpartner Technologies renders transparent or invisible to the naked eye by means of its own proprietary processes.

The French company, whose production unit is located in Rousset, is currently preparing to mass-produce its components. The company and HZB therefore signed a license agreement that allows Sunpartner Technologies to use HZB’s expertise to develop Wysips® Crystal and Wysips® Reflect.  

Franck Aveline, VP Consumer Product Line at Sunpartner Technologies, said, “We are very pleased with our collaboration with the Helmholtz-Zentrum Berlin laboratory. They sought to understand us and meet our needs by sharing their expertise and technical abilities with us in the field of thin photovoltaic film. This agreement is a new step we’re taking together towards industrializing Wysips® solutions while still maintaining control of the key technological building blocks we need to develop.”

Bernd Stannowski, senior scientist at HZB, said, “This collaboration allows us to bring our high-efficiency thin-film silicon solar cell technology developed over the past five years to industrialization. With Sunpartner we found an ideal partner to further develop and transfer to production.” 

About Sunpartner Technologies:

Sunpartner Technologies develops and integrates innovative and invisible photovoltaic solutions for the consumer electronics (wearables, mobile devices, connected objects), building (Smart Cities), and transportation (automobile, aviation, maritime) markets. Its Wysips® technology (short for “What You See Is Photovoltaic Surface”) captures solar energy and converts it to electricity so that ordinary objects require no or almost no outside energy source. The company puts its expertise to work to create smart, attractive surfaces around the world. Sunpartner Technologies was founded in 2008 in Rousset, France, and today has 65 employees and a large portfolio of patents. The company has raised 45 million Euros since its creation.

More information on PVcomB

red.

  • Copy link

You might also be interested in

  • The twisted nanotubes that tell a story
    News
    09.12.2025
    The twisted nanotubes that tell a story
    In collaboration with scientists in Germany, EPFL researchers have demonstrated that the spiral geometry of tiny, twisted magnetic tubes can be leveraged to transmit data based on quasiparticles called magnons, rather than electrons.
  • Bright prospects for tin perovskite solar cells
    Science Highlight
    03.12.2025
    Bright prospects for tin perovskite solar cells
    Perovskite solar cells are widely regarded as the next generation photovoltaic technology. However, they are not yet stable enough in the long term for widespread commercial use. One reason for this is migrating ions, which cause degradation of the semiconducting material over time. A team from HZB and the University of Potsdam has now investigated the ion density in four different, widely used perovskite compounds and discovered significant differences. Tin perovskite semiconductors produced with an alternative solvent had a particular low ion density — only one tenth that of lead perovskite semiconductors. This suggests that tin-based perovskites could be used to make solar cells that are not only really environmentally friendly but also very stable.

  • Synchrotron radiation sources: toolboxes for quantum technologies
    Science Highlight
    01.12.2025
    Synchrotron radiation sources: toolboxes for quantum technologies
    Synchrotron radiation sources generate highly brilliant light pulses, ranging from infrared to hard X-rays, which can be used to gain deep insights into complex materials. An international team has now published an overview on synchrotron methods for the further development of quantum materials and technologies in the journal Advanced Functional Materials: Using concrete examples, they show how these unique tools can help to unlock the potential of quantum technologies such as quantum computing, overcome production barriers and pave the way for future breakthroughs.