Hochempfindliche Methode zum Nachweis von Ionen-Paaren in wässriger Lösung

Robert Seidel leitet die Nachwuchsgruppe Operando Grenzflächen-Photochemie.

Robert Seidel leitet die Nachwuchsgruppe Operando Grenzflächen-Photochemie. © HZB/Setzpfandt

Die Lithiumchlorid-Lösung wurde als sehr feiner Flüssigkeitsstrahl in eine Vakuumkammer injiziert und mit weicher Röntgenstrahlung untersucht.

Die Lithiumchlorid-Lösung wurde als sehr feiner Flüssigkeitsstrahl in eine Vakuumkammer injiziert und mit weicher Röntgenstrahlung untersucht. © HZB/Setzpfandt

Wissenschaftlerinnen und Wissenschaftler des Helmholtz-Zentrum Berlin, der Freien Universität Berlin, der Universität Heidelberg und der Universität für Chemie und Technologie Prag haben einen zuvor nur theoretisch vorhergesagten, speziellen Elektronentransfer in einer wässrigen Salz-Lösung experimentell nachgewiesen. Von den Ergebnissen erhoffen sie sich eine extrem sensitive Methode zum Nachweis von Ionenpaaren in Lösungen.

Es gelang ihnen, den sogenannten Electron-Transfer-Mediated-Decay (ETMD) zu belegen. „Der ETMD ist ein Zerfallskanal, der entsteht, wenn ein Rumpfloch in einem Molekül von einem Elektron eines benachbarten Moleküls gefüllt wird. Die dabei freiwerdende Energie wird dann zur Ionisation dieses oder eines weiteren Nachbarmoleküls verwendet“, erklärt Prof. Dr. Emad Flear Aziz.

„Dieser Zerfall ist nicht-lokal und steht damit in Konkurrenz zu dem viel häufiger vorkommenden Auger-Zerfall und dem Intermolekularen Coulomb-Zerfall (ICD)“, erläutert Koautor Dr. Robert Seidel. Bei beiden Prozessen werde das Loch jeweils durch ein Elektron desselben Moleküls gefüllt. Der ETMD-Prozess sei bereits im Jahr 2001 theoretisch vorhergesagt und 2011 erstmalig in Gasclustern nachgewiesen worden, erklärt der Physiker.

Für den ETMD-Nachweis in wässriger Lösung verwendeten die Wissenschaftlerinnen und Wissenschaftler Lithiumchlorid-Salz, da bei Lithiumionen in Wasser weder der Auger- noch der ICD-Zerfall möglich sei. Auf diese Weise erhöhten sie die Wahrscheinlichkeit für den ETMD-Prozess und dessen Nachweis.

Die Messungen fanden am BESSY-II-Synchrotron mit der Liquidjet-PES-Anlage statt. Die Lithiumchlorid-Lösung wurde als sehr feiner Flüssigkeitsstrahl in eine Vakuumkammer injiziert und mit weicher Röntgenstrahlung untersucht.

„Da die Stärke des ETMD-Prozesses deutlich vom Abstand zum Nachbarmolekül beeinflusst wird, lassen sich aus der Form und der Intensität des ETMD-Spektrums Aussagen über die Ionenpaarung treffen“, erklärt Aziz. Das bedeute, dass die Wissenschaftlerinnen und Wissenschaftler mit ETMD ein spektroskopisches Werkzeug zur Hand haben, mit dem sich die unmittelbare Solvathülle um ein Ion in wässriger Lösung bestimmen lasse. Die Ergebnisse der Untersuchung wurden im renommierten Fachjournal Nature Chemistry veröffentlicht.

Zur Presseinfo der Freien Universität Berlin

Die Publikation: Observation of electron-transfer-mediated decay in aqueous solution

Isaak Unger, Robert Seidel, Stephan Thürmer, Marvin N. Pohl, Emad F. Aziz, Lorenz S. Cederbaum, Eva Muchová, Petr Slavíček, Bernd Winter, and Nikolai V. Kryzhevoin.

Nature Chemistry (2017). DOI: 10.1038/nchem.2727

Freie Universität Berlin/red

  • Link kopieren

Das könnte Sie auch interessieren

  • Synchrotronstrahlungsquellen: Werkzeugkästen für Quantentechnologien
    Science Highlight
    01.12.2025
    Synchrotronstrahlungsquellen: Werkzeugkästen für Quantentechnologien
    Synchrotronstrahlungsquellen erzeugen hochbrillante Lichtpulse, von Infrarot bis zu harter Röntgenstrahlung, mit denen sich tiefe Einblicke in komplexe Materialien gewinnen lassen. Ein internationales Team hat nun im Fachjournal Advanced Functional Materials einen Überblick über Synchrotronmethoden für die Weiterentwicklung von Quantentechnologien veröffentlicht: Anhand konkreter Beispiele zeigen sie, wie diese einzigartigen Werkzeuge dazu beitragen können, das Potenzial von Quantentechnologien wie z. B. Quantencomputing zu erschließen, Produktionsbarrieren zu überwinden und den Weg für zukünftige Durchbrüche zu ebnen.
  • Neue Katalysatormaterialien auf Basis von Torf für Brennstoffzellen
    Science Highlight
    25.11.2025
    Neue Katalysatormaterialien auf Basis von Torf für Brennstoffzellen
    Eisen-Stickstoff-Kohlenstoff-Katalysatoren haben das Potenzial, teure Platinkatalysatoren in Brennstoffzellen zu ersetzen. Dies zeigt eine Studie aus Helmholtz-Zentrum Berlin (HZB), der Physikalisch-Technischen Bundesanstalt (PTB) und der Universitäten in Tartu und Tallinn, Estland. An BESSY II beobachtete das Team, wie sich komplexe Mikrostrukturen in den Proben bilden. Anschließend analysierten sie, welche Strukturparameter für die Förderung der bevorzugten elektrochemischen Reaktionen besonders wichtig waren. Der Rohstoff für solche Katalysatoren ist gut zersetzter Torf.
  • Helmholtz-Nachwuchsgruppe zu Magnonen
    Nachricht
    24.11.2025
    Helmholtz-Nachwuchsgruppe zu Magnonen
    Dr. Hebatalla Elnaggar baut am HZB eine neue Helmholtz-Nachwuchsgruppe auf. An BESSY II will die Materialforscherin sogenannte Magnonen in magnetischen Perowskit-Dünnschichten untersuchen. Sie hat sich zum Ziel gesetzt, mit ihrer Forschung Grundlagen für eine zukünftige Terahertz-Magnon-Technologie zu legen: Magnonische Bauelemente im Terahertz-Bereich könnten Daten mit einem Bruchteil der Energie verarbeiten, die moderne Halbleiterbauelemente benötigen, und das mit bis zu tausendfacher Geschwindigkeit.

    Dr. Hebatalla Elnaggar will an BESSY II magnetische Perowskit-Dünnschichten untersuchen und damit die Grundlagen für eine künftige Magnonen-Technologie schaffen.