Green IT: New switching process in non-volatile spintronics devices

A magnetic field pulse switches the initial vortex state to “onion state” with two walls. In the subsequent magnetic snapshots the domain wall motion is shown. After 58 ns both walls meet and annihilate, thus completing the switching process into the opposite sense of rotation.

A magnetic field pulse switches the initial vortex state to “onion state” with two walls. In the subsequent magnetic snapshots the domain wall motion is shown. After 58 ns both walls meet and annihilate, thus completing the switching process into the opposite sense of rotation. © HZB

The movement of the two domain walls is shown in <strong><a href="http://www.helmholtz-berlin.de/media/media/oea/aktuell/news/animierte-gifs/automotion-mam.gif">this video (please click here)</a></strong>.

The movement of the two domain walls is shown in this video (please click here). © HZB

Physicists achieved a robust and reliable magnetization switching process by domain wall displacement without any applied fields. The effect is observed in tiny asymmetric permalloy rings and may pave the way to extremely efficient new memory devices. The results have been published in Physical Review Applied, highlighted as an Editors' Suggestion.

To construct magnetic memories, elements with two stable magnetization states are needed.  Promising candidate for such magnetic elements are tiny rings, typically of the order of few micrometers, with clockwise or counterclockwise magnetization as the two states. Unfortunately, switching between those two states directly requires a circular magnetic field which is not easy to achieve.

Switching in asymmetric nanorings

But this problem can be solved, as demonstrated by a team of scientists from several institutions in Germany including Helmholtz-Zentrum Berlin: If the hole in the ring is slightly displaced, thus making the ring thinner on one side, a simple, uniaxial magnetic field pulse of some nanoseconds duration can switches between the two possible “vortex states” used for data storage (clockwise and counterclockwise).

Short magnetic field pulse is sufficient

The scientists recorded the time evolution of the magnetization dynamics of the device at the Maxymus-Beamline at BESSY II employing time-resolved x-ray microscopy during and after the short magnetic field pulse was applied. They observed how the magnetic field pulse leads in a first step to an intermediate “onion state” in the ring. This state is characterized by two domain walls, where different magnetization zones meet each other. After the external field pulse has vanished, these domain walls move towards each other and annihilate, which results in a stable opposite magnetization of the ring “vortex state”.

Very fast process for spintronics

“Our measurements show domain wall automotion with an average velocity of about 60 m/s. This is very fast for spintronic devices at zero applied field”, Dr. Mohamad-Assaad Mawass, lead author of the publication in Physical Review Applied, points out. Mawass has worked on these experiments already for his PhD at Johannes Gutenberg University Mainz (group of Prof. Kläui) in a joined project with Max Planck Institute for intelligent system at Stuttgart (Schütz-Department). He then continued his research as a postdoc research Scientist at X-PEEM beamline at HZB.

Details of domain wall motion observed

Another observation concerns the effect of the detailed topological nature of the walls in the annihilation process. According to the results, this effect influence the dynamics only on a local scale where walls experience an attractive or repulsive interaction once they get very close to each other without inhibiting the annihilation of walls through automotion. “The domain wall inertia and the stored energy, in the system, allows the walls to overcome both the local extrinsic pinning and the topological repulsion between DWs carrying the same winding number” said Mawass. “We believe to have identified a robust and reliable switching process by domain wall automotion in ferromagnetic rings”, Mawass states. “This could pave the way for further optimization of these devices.”

 

To the publication in  Physical Review Applied (2017): "Switching by domain wall automotion in asymmetric ferromagnetic rings”, Mohamad-Assaad Mawass, Kornel Richter, Andre Bisig, Robert M. Reeve, Benjamin Krüger, Markus Weigand, Andrea Krone, Hermann Stoll, Florian Kronast, Gisela Schütz, and Mathias Kläui

The results are highlighted as Editors' Suggestion.

DOI: 10.1103/PhysRevApplied.7.044009

arö

  • Copy link

You might also be interested in

  • Fascinating archaeological find becomes a source of knowledge
    News
    12.02.2026
    Fascinating archaeological find becomes a source of knowledge
    The Bavarian State Office for the Preservation of Historical Monuments (BLfD) has sent a rare artefact from the Middle Bronze Age to Berlin for examination using cutting-edge, non-destructive methods. It is a 3,400-year-old bronze sword, unearthed during archaeological excavations in Nördlingen, Swabia, in 2023. Experts have been able to determine how the hilt and blade are connected, as well as how the rare and well-preserved decorations on the pommel were made. This has provided valuable insight into the craft techniques employed in southern Germany during the Bronze Age. The BLfD used 3D computed tomography and X-ray diffraction to analyse internal stresses at the Helmholtz-Zentrum Berlin (HZB), as well as X-ray fluorescence spectroscopy at a BESSY II beamline supervised by the Bundesanstalt für Materialforschung und -prüfung (BAM).
  • Element cobalt exhibits surprising properties
    Science Highlight
    11.02.2026
    Element cobalt exhibits surprising properties
    The element cobalt is considered a typical ferromagnet with no further secrets. However, an international team led by HZB researcher Dr. Jaime Sánchez-Barriga has now uncovered complex topological features in its electronic structure. Spin-resolved measurements of the band structure (spin-ARPES) at BESSY II revealed entangled energy bands that cross each other along extended paths in specific crystallographic directions, even at room temperature. As a result, cobalt can be considered as a highly tunable and unexpectedly rich topological platform, opening new perspectives for exploiting magnetic topological states in future information technologies.
  • MXene for energy storage: More versatile than expected
    Science Highlight
    03.02.2026
    MXene for energy storage: More versatile than expected
    MXene materials are promising candidates for a new energy storage technology. However, the processes by which the charge storage takes place were not yet fully understood. A team at HZB has examined, for the first time, individual MXene flakes to explore these processes in detail. Using the in situ Scanning transmission X-ray microscope 'MYSTIIC' at BESSY II, the scientists mapped the chemical states of Titanium atoms on the MXene flake surfaces. The results revealed two distinct redox reactions, depending on the electrolyte. This lays the groundwork for understanding charge transfer processes at the nanoscale and provides a basis for future research aimed at optimising pseudocapacitive energy storage devices.