Nanodiamanten als Energiematerialien: kleine „Anhänger“ mit großer Wirkung

Die Nanodiamanten in Lösung wurden mit unterschiedlichen Molekülgruppen modifiziert.

Die Nanodiamanten in Lösung wurden mit unterschiedlichen Molekülgruppen modifiziert. © HZB

Ein internationales Forscherteam hat neue Einblicke in die Wechselwirkungen zwischen Nanodiamanten und Wassermolekülen gewonnen. Durch Versuche an Synchrotronquellen konnten sie feststellen, dass kleine Molekülgruppen auf den Nanodiamantoberflächen großen Einfluss auf das Wasserstoffbrücken-Netzwerk ausüben. Dies könnte insbesondere für (photo)-katalytische Anwendungen interessant sein, zum Beispiel für die Produktion von solaren Brennstoffen mit Kohlendioxid und Licht.

Diamanten kennen wir als durchsichtige schimmernde Kristalle, die in Wasser rasch versinken. Aber tatsächlich kommt es darauf an, wie groß die Diamantkristalle sind. Die allerkleinesten solcher Kristalle, die nur wenige Nanometer dick sind, schweben in Wasser und bilden eine ölige, schwarze Mischung, ein so genanntes Kolloid. Solche Nanodiamanten in Lösung lassen sich vielseitig anwenden, zum Beispiel in der medizinischen Forschung oder als metall-freie Katalysatoren für die Umwandlung von Licht in chemische Energie.  

Was passiert zwischen Nanodiamanten und Wasser?

Dabei spielen die Wechselwirkungen zwischen den Nanopartikeln und den umgebenden Wassermolekülen eine extrem wichtige Rolle. Sie entscheiden darüber, ob das Kolloid stabil bleibt oder sich entmischt, bestimmen die optischen Eigenschaften, aber vor allem auch die chemische und katalytische Reaktivität. Was jedoch im Detail an den Grenzflächen zwischen Nanodiamanten und Wassermolekülen passiert, war bislang kaum bekannt.

Oberflächen mit Molekülen modifiziert

Nun hat eine internationale Kooperation zwischen russischen, japanischen, amerikanischen, französischen und deutschen Forschungsgruppen erstmals die Wechselwirkungen zwischen Nanodiamanten und Wassermolekülen genauer untersucht. Durch die Kombination verschiedener spektroskopischer Methoden an den Synchrotronquellen BESSY II am HZB in Berlin und an UVSOR III in Japan gelang es ihnen, die Wechselwirkungen im Einzelnen aufzuschlüsseln. Dafür modifizierten sie die Oberflächen der Nanodiamanten, mit Wasserstoff (-H) oder kleinen Molekülen, die an den Oberflächen der Nanodiamanten andockten, zum Beispiel Karboxyl-Gruppen (-COOH) und Hydroxylgruppen (–OH).

H-Atome könnten katalytische Aktivität steigern

Dabei zeigte sich, dass die Oberflächen-Gruppen einen unterschiedlich starken Einfluss auf die Wasserstoffbrücken-Netzwerke im Kolloid ausüben. Während Hydroxyl- und Karboxyl-Gruppen an den Nanodiamanten die Anordnung der umgebenden Wassermoleküle nur wenig veränderten, führten angehängte Wasserstoffatome zu einer deutlichen Veränderung: „Die Wasserstoffbrücken zwischen den Wassermolekülen sind viel schwächer als die, die man in normalem Wasser findet“,  sagt der HZB-Physiker Dr. Tristan Petit.  Dies könnte mit der Anreicherung von Elektronen an den Grenzflächen zwischen Nanodiamanten und Wasser zusammenhängen, vermuten die Forscher. „Diamant-Oberflächen mit angelagerten Wasserstoffatomen setzen effizient Elektronen in Wasser frei, was die Reduktion von CO2 in Wasser mit Hilfe von UV-Licht ermöglichen könnte“, erklärt Petit. „Die einzigartige Struktur von Wasser, die mit den hydrogenierten Oberflächen einhergeht, spielt sicher eine bislang unterschätzte Rolle in diesem aufregenden Prozess.”

The Journal of Physical Chemistry, Part C (2017): "Unusual Water Hydrogen Bond Network around Hydrogenated Nanodiamonds"; Petit, Tristan; Puskar, Ljiljana; Dolenko, Tatiana; Choudhury, Sneha; Ritter, Eglof; Burikov, Sergey; Laptinskiy, Kirill; Brzustowski, Quentin; Schade, Ulrich; Yuzawa, Hayato; Nagasaka, Masanari; Kosugi, Nobuhiro; Kurzyp, Magdalena; Venerosy, Amélie; Girard, Hugues; Arnault, Jean-Charles; Osawa, Eiji; Nunn, Nicholas; Shenderova, Olga; Aziz, Emad.

DOI: 10.1021/acs.jpcc.7b00721

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Poröse organische Struktur verbessert Lithium-Schwefel-Batterien
    Science Highlight
    15.09.2025
    Poröse organische Struktur verbessert Lithium-Schwefel-Batterien
    Ein neu entwickeltes Material kann die Kapazität und Stabilität von Lithium-Schwefel-Batterien deutlich verbessern. Es basiert auf Polymeren, die ein Gerüst mit offenen Poren bilden. In der Fachsprache werden sie radikale kationische kovalente organische Gerüste oder COFs genannt. In den Poren finden katalytisch beschleunigte Reaktionen statt, die Polysulfide einfangen, die ansonsten die Lebensdauer der Batterie verkürzen würden. Einige der experimentellen Analysen wurden an der BAMline an BESSY II durchgeführt. Prof. Yan Lu, HZB, und Prof. Arne Thomas, Technische Universität Berlin, haben diese Arbeit gemeinsam vorangetrieben.
  • Metalloxide: Wie Lichtpulse Elektronen in Bewegung setzen
    Science Highlight
    08.09.2025
    Metalloxide: Wie Lichtpulse Elektronen in Bewegung setzen
    Metalloxide kommen in der Natur reichlich vor und spielen eine zentrale Rolle in Technologien wie der Photokatalyse und der Photovoltaik. In den meisten Metalloxiden ist jedoch aufgrund der starken Abstoßung zwischen Elektronen benachbarter Metallatome die elektrische Leitfähigkeit sehr gering. Ein Team am HZB hat nun zusammen mit Partnerinstitutionen gezeigt, dass Lichtimpulse diese Abstoßungskräfte vorübergehend schwächen können. Dadurch sinkt die Energie, die für die Elektronenbeweglichkeit erforderlich ist, so dass ein metallähnliches Verhalten entsteht. Diese Entdeckung bietet eine neue Möglichkeit, Materialeigenschaften mit Licht zu manipulieren, und birgt ein hohes Potenzial für effizientere lichtbasierte Bauelemente.
  • Schlüsseltechnologie für eine Zukunft ohne fossile Energieträger
    Interview
    21.08.2025
    Schlüsseltechnologie für eine Zukunft ohne fossile Energieträger
    Im Juni und Juli 2025 verbrachte der Katalyseforscher Nico Fischer Zeit am HZB. Es war sein „Sabbatical“, für einige Monate war er von seinen Pflichten als Direktor des Katalyse-Instituts in Cape Town entbunden und konnte sich nur der Forschung widmen. Mit dem HZB arbeitet sein Institut an zwei Projekten, die mit Hilfe von neuartigen Katalysatortechnologien umweltfreundliche Alternativen erschließen sollen. Mit ihm sprach Antonia Rötger.