Dreidimensionales Graphen: Experiment an BESSY II zeigt, dass optische Eigenschaften einstellbar sind

REM-Aufnahmen von<strong> </strong>3D-Graphen mit unterschiedlichen Porengr&ouml;&szlig;en (a,b,c, Strich in a entspricht 1&mu;m). Dadurch lassen die optischen Eigenschaften (d,e,f) pr&auml;zise einstellen.

REM-Aufnahmen von 3D-Graphen mit unterschiedlichen Porengrößen (a,b,c, Strich in a entspricht 1μm). Dadurch lassen die optischen Eigenschaften (d,e,f) präzise einstellen. © 10.1038/ncomms14885

Eine internationale Forschergruppe hat an der Infrarot-Beamline IRIS am Elektronenspeicherring BESSY II erstmals die optischen Eigenschaften von dreidimensionalem nanoporösen Graphen untersucht. Die Experimente zeigen, dass sich die plasmonischen Anregungen (Schwingungen der Ladungsdichte) in diesem neuen Material durch Porengröße und das Einbringen von Fremdatomen präzise steuern lassen. Dies könnte die Herstellung von hochempfindlichen chemischen Sensoren ermöglichen.

Kohlenstoff ist ein sehr vielseitiges Element. Es bildet nicht nur Diamanten, Graphit und Kohle, sondern kann sich auch in der Ebene zu einem flachen Netz mit sechseckigen Maschen verbinden, dem Graphen. Dieses aus nur einer Atomlage bestehende Material besitzt eine Reihe extremer Eigenschaften, es ist hochleitfähig, optisch transparent und mechanisch sowohl flexibel als auch belastbar. Für die Entdeckung dieser exotischen Kohlenstoff-Form erhielten André Geim und Konstantin Novoselov 2010 den Nobelpreis für Physik. Und erst vor kurzem ist es einem japanischen Team gelungen, zweidimensionales Graphen zu einer dreidimensionalen Architektur mit nanometergroßen Poren aufeinanderzustapeln.

Plasmonen nach Wunsch

Ein Forscherteam unter Federführung einer Gruppe der Universität Sapienza in Rom hat nun erstmals die optischen Eigenschaften von 3D-Graphen eingehend an BESSY II untersucht. Das Team konnte aus den gemessenen Daten ermitteln, wie sich Ladungsdichteschwingungen, so genannte Plasmonen, im dreidimensionalen Graphen ausbreiten. Dabei stellten sie fest, dass diese Plasmonen den gleichen Gesetzmäßigkeiten wie in 2D-Graphen folgen. Die Frequenz der Plasmonen lässt sich im 3D-Graphen jedoch sehr genau kontrollieren: entweder durch Einbringen von Fremdatomen (Dotierung) oder über die Größe der Nanoporen, oder auch, indem man bestimmte Moleküle gezielt an das Graphen anlagert. Damit könnte sich das neuartige Material auch für die Herstellung von spezifischen chemischen Sensoren eignen, schreiben die Autoren in Nature Communications. Es ist außerdem interessant als Elektrodenmaterial für den Einsatz in Solarzellen.

Vorteile der IRIS-Beamline genutzt

Für ihre Untersuchungen haben die Forscher die IRIS-Beamline an der Berliner Synchrotronquelle BESSY II genutzt. Dort steht breitbandige Infrarotstrahlung zur Verfügung, was insbesondere die spektroskopische Untersuchung von neuartigen Materialien mit Terahertz-Strahlen ermöglicht. „Durch den low-Alpha Modus, eine besondere Betriebsform des BESSY II-Speicherrings, war es möglich, die optische Leitfähigkeit von dreidimensionalem Graphen mit besonders hohem Signal-zu-Rausch Verhältnis zu messen. Mit Standard-Methoden ist dies vor allem im Terahertz-Bereich kaum möglich. Gerade dieser Bereich ist aber wichtig, um entscheidende physikalische Eigenschaften zu beobachten“, sagt Dr. Ulrich Schade, Gruppenleiter an der Infrarot-Beamline.

 

Die Arbeit wurde in Nature Communications (2017) publiziert: „Terahertz and mid-infrared plasmons in three-dimensional nanoporous graphene“; Fausto D’Apuzzo, Alba R. Piacenti, Flavio Giorgianni, Marta Autore, Mariangela Cestelli Guidi,Augusto Marcelli, Ulrich Schade, Yoshikazu Ito, Mingwei Chen & Stefano Lupi

DOI: 10.1038/ncomms14885

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • BESSY II: Phosphorketten – ein 1D-Material mit 1D elektronischen Eigenschaften
    Science Highlight
    21.10.2025
    BESSY II: Phosphorketten – ein 1D-Material mit 1D elektronischen Eigenschaften
    Erstmals ist es einem Team an BESSY II gelungen, experimentell eindimensionale elektronische Eigenschaften in einem Material nachzuweisen. Die Proben bestanden aus kurzen Ketten aus Phosphoratomen, die sich auf einem Silbersubstrat selbst organisiert in bestimmten Winkeln bilden. Durch eine raffinierte Auswertung gelang es, die Beiträge von unterschiedlich ausgerichteten Ketten voneinander zu trennen und zu zeigen, dass die elektronischen Eigenschaften tatsächlich einen eindimensionalen Charakter besitzen. Berechnungen zeigten darüber hinaus, dass ein spannender Phasenübergang zu erwarten ist. Während das Material aus einzelnen Ketten halbleitend ist, wäre eine sehr dichte Kettenstruktur metallisch.
  • Was vibrierende Moleküle über die Zellbiologie verraten
    Science Highlight
    16.10.2025
    Was vibrierende Moleküle über die Zellbiologie verraten
    Mit Infrarot-Vibrationsspektroskopie an BESSY II lassen sich hochaufgelöste Karten von Molekülen in lebenden Zellen und Zellorganellen in ihrer natürlichen wässrigen Umgebung erstellen, zeigt eine neue Studie von einem Team aus HZB und Humboldt-Universität zu Berlin. Die Nano-IR-Spektroskopie mit SNOM an der IRIS-Beamline eignet sich, um winzige biologische Proben zu untersuchen und Infrarotbilder der Molekülschwingungen mit Nanometer-Auflösung zu erzeugen. Es ist sogar möglich, 3D-Informationen, also Infrarot-Tomogramme, aufzuzeichnen. Um das Verfahren zu testen, hat das Team Fibroblasten auf einer hochtransparenten SiC-Membran gezüchtet und in vivo untersucht. Die Methode ermöglicht neue Einblicke in die Zellbiologie.
  • Verleihung des Technologietransfer-Preises 2025
    Nachricht
    07.10.2025
    Verleihung des Technologietransfer-Preises 2025
    Die Verleihung des Technologietransfer-Preises wird am 13. Oktober um 14 Uhr im Hörsaal des BESSY-II-Gebäudes in Adlershof stattfinden.