Solarer Wasserstoff mit „künstlichem Blatt“:

© HZB

Forschungsteam findet heraus, warum eine einfache Behandlung die Effizienz von preiswerten Metall-Oxid-Photoelektroden steigert

Metall-Oxide sind als preiswerte und stabile Photoelektroden für die Aufspaltung von Wasser mit Sonnenlicht im Gespräch. Leider lassen sich mit dieser Materialklasse bisher nur mittelmäßig hohe Wirkungsgrade erzielen.  Mit einer Wärmebehandlung unter Wasserstoff-Atmosphäre lässt sich die Effizienz jedoch etwas steigern. Nun hat eine internationale Kooperation herausgefunden, welche Mechanismen dabei eine Rolle spielen. Die Ergebnisse zeigen Wege zu effizienteren und gleichzeitig preisgünstigen Materialsystemen für die solare Wasserstoffproduktion.

Die Energieversorgung basiert noch immer zu einem Großteil auf fossilen Ressourcen. Dass sich dies rasch ändern muss, ist unbestritten. Eine Alternative zu fossilem Erdgas ist Wasserstoff. Wasserstoff hat eine enorme Energiedichte, kann gespeichert oder weiterverarbeitet werden, z.B. zu Methan, oder in einer Brennstoffzelle sauberen Strom erzeugen. Und wenn Wasserstoff allein mit Sonnenlicht produziert wird, wäre es eine komplett erneuerbare Energieressource, deren Verbrauch klimaneutral ist.

Künstliches Blatt

Die Natur macht es mit der Photosynthese vor: Sonnenlicht lässt sich nutzen, um Wasser in Sauerstoff und Wasserstoff zu spalten. Dies gelingt auch mit künstlich hergestellten Materialsystemen aus photoaktiven, halbleitenden Schichten: „Künstliche Blatt”-Systeme schaffen im Extremfall sogar Wirkungsgrade von über 15 Prozent, weit mehr als das natürliche Vorbild (1-2%). Solche Rekord-Wirkungsgrade wurden bisher jedoch nur mit einer teuren Materialkombination erreicht, die im Kontakt mit Wasser nicht lange stabil blieb. Damit solar erzeugter Wasserstoff wirklich auf den Markt kommen kann,  müssen solche Systeme langzeitstabil, preiswert und effizient zugleich sein.

Spitzenkandidaten mit einem Nachteil

Komplexe Metall-Oxide sind sehr gute Kandidaten für künstliche Blatt-Systeme: Sie sind preiswert und stabil, auch in wässrigen Lösungen. Wissenschaftler am HZB-Institut für Solare Brennstoffe arbeiten intensiv daran, diese Materialklasse weiterzuentwickeln. Bislang zeigen Photoelektroden aus Metall-Oxiden allerdings nur moderate Wirkungsgrade (< 8 %). Einer der Gründe liegt in der schlechten Beweglichkeit der Ladungsträger, die bis zu 100.000 mal schlechter ist als in klassischen Halbleitermaterialien wie Silizium oder Gallium-Arsenid. „Dass die Ladungsträger langsam sind, wäre nicht mal so schlimm. Das Problem ist, dass sie oft sehr kurze Lebensdauern haben, im Bereich von Piko- oder sogar Nanosekunden. Viele verschwinden so schnell, dass sie überhaupt nicht zur Aufspaltung von Wasser beitragen“, erklärt HZB-Forscher Dr. Fatwa Abdi.

Wärmebehandlung mit Wasserstoff

Dagegen hilft eine Wärmebehandlung unter Wasserstoff-Atmosphäre, nachdem die Mteall-Oxid-Schichten deponiert wurden. Fatwa Abdi und Kollegen haben nun in Bismuth-Vanadat (BiVO4), einem der interessanten Materialien für Photoelektroden, untersucht, warum diese Behandlung die Lebensspanne der Ladungsträger verbessert.

Lebenszeit der Ladungsträger verdoppelt

Mit zeitaufgelösten Leitfähigkeitsmessungen zeigten sie, dass sowohl Elektronen als auch Löcher in Wasserstoff-behandeltem BiVO4 mehr als doppelt so lange „überleben“ als im unbehandelten Material. Dadurch steigt auch der Photostrom unter Sonnenlicht deutlich, was sich positiv auf die Effizienz auswirkt. Weitere Messungen der Dresdner Kooperationspartner sowie Berechnungen der Partner von KAUST, Saudi Arabien, belegen: Durch die Behandlung werden Wasserstoff-Atome in die Metall-Oxid-Schicht eingebaut und damit Defekte inaktiviert und reduziert. „Damit gibt es im Material weniger “Fallen”, in denen Ladungsträger verloren gehen oder rekombinieren. Dadurch können mehr Ladungsträger zum Aufspalten des Wassers beitragen“, erklärt Abdi.

Die Studie ist publiziert in Advanced Energy Materials (25. August 2017): Enhancing Charge Carrier Lifetime in Metal Oxide Photoelectrodes through Mild Hydrogen Treatment (DOI: 10.1002/aenm.201701536)

Ji-Wook Jang, Dennis Friedrich, Sönke Müller, Marlene Lamers, Hannes Hempel, Sheikha Lardhi, Zhen Cao, Moussab Harb, Luigi Cavallo, René Heller, Rainer Eichberger, Roel van de Krol, and Fatwa F. Abdi*


arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Neue Methode wirft Licht auf Nanomaterialien: Wie MXene wirklich funktionieren
    Science Highlight
    01.10.2025
    Neue Methode wirft Licht auf Nanomaterialien: Wie MXene wirklich funktionieren
    Forschende haben erstmals die tatsächlichen Eigenschaften einzelner MXene-Flocken gemessen – einem spannenden neuen Nanomaterial mit Potenzial für bessere Batterien, flexible Elektronik und Geräte für saubere Energie. Mithilfe einer neuartigen lichtbasierten Technik – der spektroskopischen Mikroellipsometrie – haben sie herausgefunden, wie sich MXene auf der Ebene einzelner Flocken verhalten und dabei Veränderungen in der Leitfähigkeit und der optischen Reaktion aufgedeckt, die zuvor bei der Untersuchung gestapelter Schichten verborgen geblieben waren. Dieser Durchbruch liefert grundlegendes Wissen und Werkzeuge für die Entwicklung intelligenterer und effizienterer Technologien auf Basis von MXenen. 
  • Neues HZB-Magazin „Lichtblick“ ist erschienen
    Nachricht
    18.09.2025
    Neues HZB-Magazin „Lichtblick“ ist erschienen
    In der neuen Ausgabe stellen wir unsere neue kaufmännische Geschäftsführerin vor. Wir zeigen aber auch, wie wichtig uns der Austausch ist: Die Wissenschaft lebt ohnehin vom fruchtbaren Austausch. Uns ist aber auch der Dialog mit der Öffentlichkeit sehr wichtig. Und ebenso kann Kunst einen bereichernden Zugang zur Wissenschaft schaffen und Brücken bauen. Um all diese Themen geht es in der neuen Ausgabe der Lichtblick.
  • Poröse organische Struktur verbessert Lithium-Schwefel-Batterien
    Science Highlight
    15.09.2025
    Poröse organische Struktur verbessert Lithium-Schwefel-Batterien
    Ein neu entwickeltes Material kann die Kapazität und Stabilität von Lithium-Schwefel-Batterien deutlich verbessern. Es basiert auf Polymeren, die ein Gerüst mit offenen Poren bilden. In der Fachsprache werden sie radikale kationische kovalente organische Gerüste oder COFs genannt. In den Poren finden katalytisch beschleunigte Reaktionen statt, die Polysulfide einfangen, die ansonsten die Lebensdauer der Batterie verkürzen würden. Einige der experimentellen Analysen wurden an der BAMline an BESSY II durchgeführt. Prof. Yan Lu, HZB, und Prof. Arne Thomas, Technische Universität Berlin, haben diese Arbeit gemeinsam vorangetrieben.