HZB makes new contacts with Argentinian Neutron Beams Laboratory

Photo (from left to right): Dr. Javier Santisteban, scientific director of LAHN, Thomas Frederking, administrative director of HZB, Karina Pierpauli, CEO of LAHN, and Prof. Dr. Bernd Rech, scientific director of HZB. They came together to sign the agreement in Berlin.photo: Silvia Zerbe

Photo (from left to right): Dr. Javier Santisteban, scientific director of LAHN, Thomas Frederking, administrative director of HZB, Karina Pierpauli, CEO of LAHN, and Prof. Dr. Bernd Rech, scientific director of HZB. They came together to sign the agreement in Berlin.photo: Silvia Zerbe

Helmholtz-Zentrum Berlin (HZB) has signed a cooperation agreement with the Argentinian Neutron Beams Laboratory, LAHN (Laboratorio Argentino de Haces de Neutrones). Through this cooperation, HZB will be advising Argentinian researchers on the construction of two neutron instruments. Also planned is an exchange programme for researchers from both countries.

LAHN plans to build an instrument for residual stress analysis and for neutron tomography at its research reactor RA-10. The researchers from Buenos Aires will be receiving advice from HZB scientists who are world-renowned for their many years of expertise in the development of neutron experiments. As one of the first concrete measures, a postdoc from Argentina will be arriving at HZB at the beginning of 2018 and will receive training from the experts on site.

Visiting HZB for the signing of the agreement at the end of September 2017 were the LAHN CEO and engineer Karina Pierpauli and the scientific director Dr. Javier Santisteban. The two guests visited the experimental halls of the research reactor BER II and met for discussions with HZB managers and neutron researchers. “Through this cooperation with LAHN, we are increasing the knowledge transfer and forging ahead with the internationalisation strategy of HZB,” says Dr. Catalina Elena Jimenez, the responsible spokesperson for internationalisation in the HZB management office.

Cooperation partners: Laboratorio Argentino de Haces de Neutrones

(sz)

  • Copy link

You might also be interested in

  • Key technology for a future without fossil fuels
    Interview
    21.08.2025
    Key technology for a future without fossil fuels
    In June and July 2025, catalyst researcher Nico Fischer spent some time at HZB. It was his sabbatical, he was relieved of his duties as Director of the Catalysis Institute in Cape Town for several months and was able to focus on research only. His institute is collaborating with HZB on two projects that aim to develop environmentally friendly alternatives using innovative catalyst technologies. The questions were asked by Antonia Rötger, HZB.
  • 5000th patient treated with protons for eye tumours
    News
    19.08.2025
    5000th patient treated with protons for eye tumours
    For more than 25 years, Charité – Universitätsmedizin Berlin and the Helmholtz-Zentrum Berlin (HZB) have been jointly offering proton radiation therapy for eye tumours. The HZB operates a proton accelerator in Berlin-Wannsee for this purpose, while Charité provides medical care for the patients. The 5000th patient was treated at the beginning of August.
  • Iridium-free catalysts for acid water electrolysis investigated
    Science Highlight
    13.08.2025
    Iridium-free catalysts for acid water electrolysis investigated
    Hydrogen will play an important role, both as a fuel and as a raw material for industry. However, in order to produce relevant quantities of hydrogen, water electrolysis must become feasible on a multi-gigawatt scale. One bottleneck is the catalysts required, with iridium in particular being an extremely rare element. An international collaboration has therefore investigated iridium-free catalysts for acidic water electrolysis based on the element cobalt. Through investigations with various methods, among them experiments at the LiXEdrom at the BESSY II X-ray source in Berlin, they were able to elucidate processes that take place during water electrolysis in a cobalt-iron-lead oxide material as the anode. The study is published in Nature Energy.