HZB knüpft Kontakte zum argentinischen Neutronenzentrum

Foto v.l.n.r.: Dr. Javier Santisteban (wissenschaftlicher Direktor des LAHN), Thomas Frederking (kaufmännischer Geschäftsführer des HZB), Karina Pierpauli (CEO des LAHN) und Prof. Dr. Bernd Rech (wissenschaftlicher Geschäftsführer des HZB) kamen zur Vertragsunterzeichnung in Berlin zusammen. Foto: Silvia Zerbe

Foto v.l.n.r.: Dr. Javier Santisteban (wissenschaftlicher Direktor des LAHN), Thomas Frederking (kaufmännischer Geschäftsführer des HZB), Karina Pierpauli (CEO des LAHN) und Prof. Dr. Bernd Rech (wissenschaftlicher Geschäftsführer des HZB) kamen zur Vertragsunterzeichnung in Berlin zusammen. Foto: Silvia Zerbe

Das Helmholtz-Zentrum Berlin (HZB) hat eine Kooperationsvereinbarung mit der argentinischen Forschungseinrichtung für Neutronenforschung - LAHN (Argentinian Neutron Beams Laboratory) unterzeichnet. Das HZB wird dabei die Forschenden aus Argentinien beim Aufbau von zwei Neutroneninstrumenten beraten. Darüber hinaus ist ein Austauschprogramm für Forschende aus beiden Ländern geplant.

Das LAHN will ein Instrument für Eigenspannungsanalyse und für Neutronentomographie an seinem Forschungsreaktor RA-10 aufbauen. Dabei werden die Forschenden aus Buenos Aires von den HZB-Wissenschaftlern beraten, die langjährige, weltweit anerkannte Expertise in der Entwicklung von Neutronenexperimenten haben. Eine erste konkrete Maßnahme ist: Ein Postdoktorand aus Argentinien wird Anfang 2018 an das HZB kommen und sich vor Ort von den Expertinnen und Experten ausbilden lassen.

Bei der Vertragsunterzeichnung Ende September 2017 waren der CEO des LAHN, Ing. Karina Pierpauli, und Dr. Javier Santisteban, wissenschaftlicher Direktor, zu Gast am HZB. Sie besichtigten die Experimentierhallen um den Forschungsreaktor BER II und kamen zu Gesprächen mit der Geschäftsführung des HZB und den Neutronenforschern zusammen. „Durch die Kooperation mit dem LAHN stärken wir den Wissenstransfer und treiben die Internationalisierungsstrategie des HZB weiter voran“, sagt Dr. Catalina Elena Jimenez, die zuständige Referentin für Internationalisierung im HZB-Geschäftsführungsbüro.

Kooperationspartner: Laboratorio Argentino de Haces de Neutrones

(sz)

  • Link kopieren

Das könnte Sie auch interessieren

  • Batterieforschung: Alterungsprozesse operando sichtbar gemacht
    Science Highlight
    29.04.2025
    Batterieforschung: Alterungsprozesse operando sichtbar gemacht
    Lithium-Knopfzellen mit Elektroden aus Nickel-Mangan-Kobalt-Oxiden (NMC) sind sehr leistungsfähig. Doch mit der Zeit lässt die Kapazität leider nach. Nun konnte ein Team erstmals mit einem zerstörungsfreien Verfahren beobachten, wie sich die Elementzusammensetzung der einzelnen Schichten in einer Knopfzelle während der Ladezyklen verändert. An der Studie, die nun im Fachjournal Small erschienen ist, waren Teams der Physikalisch-Technischen Bundesanstalt (PTB), der Universität Münster sowie Forschende der Forschungsgruppe SyncLab des HZB und des Applikationslabors BLiX der Technischen Universität Berlin beteiligt. Ein Teil der Messungen fand mit einem Instrument im BLiX-Labor statt, ein weiterer Teil an der Synchrotronquelle BESSY II.
  • Grüner Wasserstoff: Käfigstruktur verwandelt sich in effizienten Katalysator
    Science Highlight
    17.04.2025
    Grüner Wasserstoff: Käfigstruktur verwandelt sich in effizienten Katalysator
    Clathrate zeichnen sich durch eine komplexe Käfigstruktur aus, die auch Platz für Gast-Ionen bietet. Nun hat ein Team erstmals untersucht, wie gut sich Clathrate als Katalysatoren für die elektrolytische Wasserstoffproduktion eignen. Das Ergebnis: Effizienz und Robustheit sind sogar besser als bei den aktuell genutzten Nickel-basierten Katalysatoren. Dafür fanden sie auch eine Begründung. Messungen an BESSY II zeigten, dass sich die Proben während der katalytischen Reaktion strukturell verändern: Aus der dreidimensionalen Käfigstruktur bilden sich ultradünne Nanoblätter, die maximalen Kontakt zu aktiven Katalysezentren ermöglichen. Die Studie ist in „Angewandte Chemie“ publiziert.
  • Solarzellen auf Mondglas für eine zukünftige Basis auf dem Mond
    Science Highlight
    07.04.2025
    Solarzellen auf Mondglas für eine zukünftige Basis auf dem Mond
    Zukünftige Mondsiedlungen werden Energie benötigen, die Photovoltaik liefern könnte. Material in den Weltraum zu bringen, ist jedoch teuer – ein Kilogramm zum Mond zu transportieren, kostet eine Million Euro. Doch auch auf dem Mond gibt es Ressourcen, die sich nutzen lassen. Ein Forschungsteam um Dr. Felix Lang, Universität Potsdam, und Dr. Stefan Linke, Technische Universität Berlin, haben nun das benötigte Glas aus „Mondstaub“ (Regolith) hergestellt und mit Perowskit beschichtet. Damit ließe sich bis zu 99 Prozent des Gewichts einsparen, um auf dem Mond PV-Module zu produzieren. Die Strahlenhärte konnte das Team am Protonenbeschleuniger des HZB getestet.