PVcomB and AVANCIS launch joint MyCIGS research project in order to improve outdoor performance of thin film CIGS solar modules

The energy yields of CIGS modules under real world conditions can be measured on a outdoor testing platform at PVcomB.

The energy yields of CIGS modules under real world conditions can be measured on a outdoor testing platform at PVcomB. © HZB

The Competence Centre Thin-Film- and Nanotechnology for Photovoltaics Berlin (PVcomB) is contributing its expertise to improving copper-indium-gallium-sulphide (CIGS) thin-film production in the MyCIGS collaborative research project. CIGS-module manufacturer AVANCIS in Munich is coordinating this project funded by the German Federal Ministry for Economic Affairs and Energy (BMWi). The Carl von Ossietzky University of Oldenburg (Oldenburg University) and Friedrich-Alexander-Universität Erlangen-Nuremberg (FAU) are also partners in the project.

Thin-film solar modules based on copper-indium-gallium-diselenide compounds, or CIGS for short, are highly efficient, economical, and versatile. [1] Thanks to their special properties, they can be employed not just on roofing, but for building cladding as well. Building-integrated Photovoltaics (BIPV) offer diverse new aesthetic configurations for architecture and will find a place on many more surfaces in urban environments.

Improvement in energy yield

Whereas module efficiency has been the focus of previous projects, the MyCIGS project will address how to optimise the energy yield in actual applications, i.e. under realistic conditions of outdoor use. In addition to the efficiency, additional properties such as the temperature coefficients and the power output under conditions of low or diffuse illumination are critical factors. These also play an important role when employing CIGS modules in cladding and buildings. 

Expertise at PVcomB in CIGS thin film technology

“We have a lot of experience at PVcomB with characterising and tuning the performance of CIGS thin-films”, explains Dr. Reiner Klenk, in charge of the MyCIGS Project at PVcomB. Using the numerous measurement techniques that have been established at PVcomB, major parameters like temperature coefficients and behaviour under low light conditions can be traced back to physical processes in the solar module. The research project fits in with PVcomB’s strategy of going beyond manufacturing technologies and to also address topics such as encapsulation, reliability, outdoor measurements, and building integration.

New Outdoor Performance research group

As part of the Helmholtz Energy Systems Integration Project for the Future, a new research group headed by Dr. Carolin Ulbrich has just been established. This research group will now be able to measure the energy yields of CIGS modules as well as acquire data sets on local incident radiation and temperature by means of a outdoor testing platform at PVcomB.

Optimised modules

AVANCIS and PVcomB utilise differing technologies and materials in fabricating the individual layers of solar modules. Differing layers made by the project partners can be combined, thereby generating a combinatorial set of baseline data with which the influence of manufacturing technologies on the energy yield can be determined more accurately.

In addition, MyCIGS will benefit from the current PEARL TF-PV solar-era.net project in which PVcomB is augmenting its expertise in defect analysis of CIGS solar modules through collaboration with its German, Dutch, and Austrian institutional research partners, module manufacturers, and solar power station designers.

 

[1] White Paper for CIGS Thin-Film Solar Cell Technology

AVANCIS / HZB

  • Copy link

You might also be interested in

  • KlarText Prize for Science Communication goes to Dr Hanna Trzesniowski
    News
    08.09.2025
    KlarText Prize for Science Communication goes to Dr Hanna Trzesniowski
    Dr Hanna Trzesniowski, who completed her doctoral thesis at HZB in 2024, was awarded the Klaus Tschira Prize. 
  • Shedding light on insulators: how light pulses unfreeze electrons
    Science Highlight
    08.09.2025
    Shedding light on insulators: how light pulses unfreeze electrons
    Metal oxides are abundant in nature and central to technologies such as photocatalysis and photovoltaics. Yet, many suffer from poor electrical conduction, caused by strong repulsion between electrons in neighboring metal atoms. Researchers at HZB and partner institutions have shown that light pulses can temporarily weaken these repulsive forces, lowering the energy required for electrons mobility, inducing a metal-like behavior. This discovery offers a new way to manipulate material properties with light, with high potential to more efficient light-based devices.
  • Key technology for a future without fossil fuels
    Interview
    21.08.2025
    Key technology for a future without fossil fuels
    In June and July 2025, catalyst researcher Nico Fischer spent some time at HZB. It was his sabbatical, he was relieved of his duties as Director of the Catalysis Institute in Cape Town for several months and was able to focus on research only. His institute is collaborating with HZB on two projects that aim to develop environmentally friendly alternatives using innovative catalyst technologies. The questions were asked by Antonia Rötger, HZB.