Neues Forschungsprojekt mit AVANCIS optimiert CIGS-Dünnschichtsolarmodule im Außeneinsatz

Auf dem Freifeld-Teststand des PVcomB erfasst eine Arbeitsgruppe die Erträge von CIGS-Modulen unter realen Bedingungen. Bild. HZB

Auf dem Freifeld-Teststand des PVcomB erfasst eine Arbeitsgruppe die Erträge von CIGS-Modulen unter realen Bedingungen. Bild. HZB © HZB

Das Photovoltaik-Kompetenzzentrum (PVcomB) am Helmholtz-Zentrum Berlin bringt seine Expertise zur Optimierung der CIGS-Dünnschichtproduktion in das Verbundforschungsprojekt MyCIGS ein. Der CIGS-Modulhersteller AVANCIS, München, koordiniert das Projekt, das vom Bundeswirtschaftsministerium gefördert wird. Mit beteiligt sind auch die Universitäten in Oldenburg und Erlangen-Nürnberg.

Dünnschicht-Solarmodule auf Basis von Kupfer-Indium-Gallium-Diselenid-Verbindungen, kurz CIGS, sind hocheffizient, kostengünstig und vielseitig einsetzbar [1]. Insbesondere können sie auf Grund ihrer besonderen Eigenschaften nicht nur auf Dächern, sondern auch an Gebäudefassaden eingesetzt werden. Die bauwerkintegrierte Photovoltaik (auf Englisch: Building integrated Photovoltaic, BIPV) bietet vielfältige neue ästhetische Gestaltungsmöglichkeiten. Dadurch lassen sich viele  Flächen, besonders in Städten, neu erschließen.

Steigerung des Energieertrages im Außeneinsatz

Nachdem in vielen Projekten der Wirkungsgrad im Vordergrund steht, geht es beim MyCIGS Projekt darum, den Energieertrag unter realen Bedingungen im Außeneinsatz zu optimieren. Hierfür sind neben dem Wirkungsgrad zusätzliche Eigenschaften wie die Temperaturkoeffizienten und die Leistung bei geringer oder diffuser Beleuchtung entscheidend. Auch beim Einsatz von CIGS-Modulen an Fassaden und Gebäuden spielen diese Faktoren eine große Rolle.

Expertise für CIGS-Dünnschichtmodule am PVcomB

„Am PVcomB haben wir langjährige Erfahrungen mit der Charakterisierung und Optimierung von CIGS-Dünnschichten“, erklärt Dr. Reiner Klenk, der für MyCIGS am PVcomB zuständig ist. Mit den zahlreichen am PVcomB etablierten Messmethoden können zentrale Parameter wie Temperaturkoeffizienten und Schwachlichtverhalten auf physikalische Prozesse im Solarmodul zurückgeführt werden. Das Forschungsprojekt passt hervorragend zur Strategie des PVcomB, über die Herstellungstechnologien hinaus neue  Schwerpunkte im Bereich der Verkapselung, Zuverlässigkeit, Freifeld-Messung und Gebäudeintegration zu setzen.

Neue Arbeitsgruppe Outdoor-Performance

So wurde gerade im Rahmen des Helmholtz-Zukunftsprojekts Energiesystemintegration eine neue Arbeitsgruppe gegründet, die von Dr. Carolin Ulbrich geleitet wird. Auf einem Freifeld-Teststand des PVcomB kann diese Arbeitsgruppe nun die Energieerträge realer CIGS-Module messen sowie Daten zur lokalen Einstrahlung und Temperatur erheben.

Optimierte Module

In der Herstellung einzelner Schichten in Solarmodulen verwenden AVANCIS und PVcomB unterschiedliche Technologien und Materialien. Dabei können einzelne Schichten der Projektpartner auch miteinander kombiniert werden. Dadurch entsteht eine breitere Datenbasis, mit der sich der Einfluss der Herstellung auf den Ertrag besser beurteilen lässt.

MyCIGS profitiert außerdem von dem aktuellen Solar-era.net Projekt „PEARL TF-PV“, in dem das PVcomB zusammen mit deutschen, niederländischen und österreichischen Forschungsinstitutionen, Modulherstellern und Solarkraftwerksplanern seine Kompetenzen in der Fehleranalyse von CIGS-Solarmodulen stärkt.

 

[1] White Paper for CIGS Thin-Film Solar Cell Technology

AVANCIS / HZB

  • Link kopieren

Das könnte Sie auch interessieren

  • Protonen gegen Krebs: Neue Forschungsbeamline für innovative Strahlentherapien
    Nachricht
    27.11.2024
    Protonen gegen Krebs: Neue Forschungsbeamline für innovative Strahlentherapien
    Das HZB hat gemeinsam mit der Universität der Bundeswehr München eine neue Beamline für die präklinische Forschung eingerichtet. Sie ermöglicht künftig am HZB Experimente an biologischen Proben zu innovativen Strahlentherapien mit Protonen.
  • Batterieforschung mit dem HZB-Röntgenmikroskop
    Science Highlight
    18.11.2024
    Batterieforschung mit dem HZB-Röntgenmikroskop
    Um die Kapazität von Lithiumbatterien weiter zu steigern, werden neue Kathodenmaterialien entwickelt. Mehrschichtige lithiumreiche Übergangsmetalloxide (LRTMO) ermöglichen eine besonders hohe Energiedichte. Mit jedem Ladezyklus wird jedoch ihre Kapazität geringer, was mit strukturellen und chemischen Veränderungen zusammenhängt. Mit Röntgenuntersuchungen an BESSY II hat nun ein Team aus chinesischen Forschungseinrichtungen diese Veränderungen erstmals experimentell mit höchster Präzision vermessen: Mit dem einzigartigen Röntgenmikroskop konnten sie morphologische und strukturelle Entwicklungen auf der Nanometerskala beobachten und dabei auch chemische Veränderungen aufklären.

  • Wasserstoff: Durchbruch bei Alkalischen Membran-Elektrolyseuren
    Science Highlight
    28.10.2024
    Wasserstoff: Durchbruch bei Alkalischen Membran-Elektrolyseuren
    Einem Team aus Technischer Universität Berlin, Helmholtz-Zentrum Berlin, Institut für Mikrosystemtechnik der Universität Freiburg (IMTEK) und Siemens Energy ist es gelungen, eine hocheffiziente alkalische Membran-Elektrolyse Zelle erstmals im Labormaßstab in Betrieb zu nehmen. Das Besondere: Der Anodenkatalysator besteht dabei aus preisgünstigen Nickelverbindungen und nicht aus begrenzt verfügbaren Edelmetallen. An BESSY II konnte das Team die katalytischen Prozesse durch operando Messungen im Detail darstellen, ein Theorie Team (USA, Singapur) lieferte eine konsistente molekulare Beschreibung. In Freiburg wurden mit einem neuen Beschichtungsverfahren Kleinzellen gebaut und im Betrieb getestet. Die Ergebnisse sind im renommierten Fachjournal Nature Catalysis publiziert.