PVcomB and AVANCIS launch joint MyCIGS research project in order to improve outdoor performance of thin film CIGS solar modules

The energy yields of CIGS modules under real world conditions can be measured on a outdoor testing platform at PVcomB.

The energy yields of CIGS modules under real world conditions can be measured on a outdoor testing platform at PVcomB. © HZB

The Competence Centre Thin-Film- and Nanotechnology for Photovoltaics Berlin (PVcomB) is contributing its expertise to improving copper-indium-gallium-sulphide (CIGS) thin-film production in the MyCIGS collaborative research project. CIGS-module manufacturer AVANCIS in Munich is coordinating this project funded by the German Federal Ministry for Economic Affairs and Energy (BMWi). The Carl von Ossietzky University of Oldenburg (Oldenburg University) and Friedrich-Alexander-Universität Erlangen-Nuremberg (FAU) are also partners in the project.

Thin-film solar modules based on copper-indium-gallium-diselenide compounds, or CIGS for short, are highly efficient, economical, and versatile. [1] Thanks to their special properties, they can be employed not just on roofing, but for building cladding as well. Building-integrated Photovoltaics (BIPV) offer diverse new aesthetic configurations for architecture and will find a place on many more surfaces in urban environments.

Improvement in energy yield

Whereas module efficiency has been the focus of previous projects, the MyCIGS project will address how to optimise the energy yield in actual applications, i.e. under realistic conditions of outdoor use. In addition to the efficiency, additional properties such as the temperature coefficients and the power output under conditions of low or diffuse illumination are critical factors. These also play an important role when employing CIGS modules in cladding and buildings. 

Expertise at PVcomB in CIGS thin film technology

“We have a lot of experience at PVcomB with characterising and tuning the performance of CIGS thin-films”, explains Dr. Reiner Klenk, in charge of the MyCIGS Project at PVcomB. Using the numerous measurement techniques that have been established at PVcomB, major parameters like temperature coefficients and behaviour under low light conditions can be traced back to physical processes in the solar module. The research project fits in with PVcomB’s strategy of going beyond manufacturing technologies and to also address topics such as encapsulation, reliability, outdoor measurements, and building integration.

New Outdoor Performance research group

As part of the Helmholtz Energy Systems Integration Project for the Future, a new research group headed by Dr. Carolin Ulbrich has just been established. This research group will now be able to measure the energy yields of CIGS modules as well as acquire data sets on local incident radiation and temperature by means of a outdoor testing platform at PVcomB.

Optimised modules

AVANCIS and PVcomB utilise differing technologies and materials in fabricating the individual layers of solar modules. Differing layers made by the project partners can be combined, thereby generating a combinatorial set of baseline data with which the influence of manufacturing technologies on the energy yield can be determined more accurately.

In addition, MyCIGS will benefit from the current PEARL TF-PV solar-era.net project in which PVcomB is augmenting its expertise in defect analysis of CIGS solar modules through collaboration with its German, Dutch, and Austrian institutional research partners, module manufacturers, and solar power station designers.

 

[1] White Paper for CIGS Thin-Film Solar Cell Technology

AVANCIS / HZB


You might also be interested in

  • Best Innovator Award 2023 for Artem Musiienko
    News
    22.03.2024
    Best Innovator Award 2023 for Artem Musiienko
    Dr. Artem Musiienko has been awarded a special prize for his groundbreaking new method for characterising semiconductors. At the recent annual conference of the Marie Curie Alumni Association (MCAA) in Milan, Italy, he received the MCAA Award for the best innovation. Since 2023, Musiienko has been carrying out his research project with a postdoctoral fellowship from the Marie Sklodowska Curie Actions in Antonio Abate's department, Novel Materials and Interfaces for Photovoltaic Solar Cells (SE-AMIP).
  • Neutron experiment at BER II reveals new spin phase in quantum materials
    Science Highlight
    18.03.2024
    Neutron experiment at BER II reveals new spin phase in quantum materials
    New states of order can arise in quantum magnetic materials under magnetic fields. An international team has now gained new insights into these special states of matter through experiments at the Berlin neutron source BER II and its High-Field Magnet. BER II served science until the end of 2019 and has since been shut down. Results from data at BER II are still being published.

  • Where quantum computers can score
    Science Highlight
    15.03.2024
    Where quantum computers can score
    The travelling salesman problem is considered a prime example of a combinatorial optimisation problem. Now a Berlin team led by theoretical physicist Prof. Dr. Jens Eisert of Freie Universität Berlin and HZB has shown that a certain class of such problems can actually be solved better and much faster with quantum computers than with conventional methods.