Themen: Solarenergie (226)

Science Highlight    07.12.2017

Solarenergie: Defekte in Kesterit-Halbleitern mit Neutronen untersucht

Das Bild (backscattered electron micrograph) zeigt CZTSe-Kristalle (grau) in einer Epoxid-Matrix (schwarz).
Copyright: HZB

Ausmaß der Cu/Zn Unordnung in der Kesterit-Phase in Abhängigkeit von den Verhältnissen (Cu/(Zn+Sn) und Zn/Sn.
Copyright: HZB

Ein Forschungsteam am HZB hat die verschiedenen Defekt-Typen in Kesterit-Halbleitern erstmals genau charakterisiert. Dies gelang ihnen mit Hilfe von Neutronenstreuung am BER II und am Oak Ridge National Laboratory, USA. Die Ergebnisse zeigen Möglichkeiten zur gezielten Optimierung von Kesterit-Solarzellen auf.

Kesterite sind preisgünstige und umweltfreundliche Materialien, die halbleitend sind und Licht in Strom umwandeln können. Vom strukturellen Aufbau her ähneln Kesterite den Chalkopyrit-Halbleitern mit der Summenformel Cu(In,Ga)Se2. In Kesteriten (z. B. Cu2ZnSnSe4 abgekürzt CZTSe) werden die seltenen Elemente Indium und Gallium jedoch durch Zink und Zinn ersetzt, die viel häufiger in der Erdkruste vorkommen und weitaus billiger sind. Aktuell erreichen die besten Kesterit-basierten Dünnschicht-Solarzellen Wirkungsgrade bis zu 12,6 Prozent, und dies mit Kesterit-Schichten von nur einem Mikrometer Dicke. Dies macht sie zu interessanten Kandidaten für sehr preiswerte und sogar biegsame Solarmodule, die ungiftig und robust sind. Einkristalline Silizium-Solarzellen oder Chalkopyrit-Dünnschichten schaffen zwar Wirkungsgrade weit über 20 Prozent, sind allerdings deutlich teurer.

Bestimmte Defekte steigern die Effizienz

Bei den Kesterit-Dünnschicht-Solarzellen werden die höchsten Wirkungsgrade mit Hilfe von CZTSe-Absorberschichten erreicht, die im Vergleich zur Summenformel etwas weniger Kupfer und etwas mehr Zink enthalten, also eine kupferarme und zinkreiche Zusammensetzung aufweisen. Eine solche Stöchiometrieabweichung führt zwangsläufig zu Fehlstellen in der Kristallstruktur, die aber offenbar den Wirkungsgrad erhöhen. „Wir haben nun mit Hilfe von Neutronenbeugungsexperimenten diese Fehlstellen genau charakterisiert und ihre lokalen Konzentrationen ermittelt“, erklärt Dr. Galina Gurieva aus der HZB-Abteilung Struktur und Dynamik von Energiematerialien.

Mit Neutronen Defekte katalogisiert

Dafür ist die Methode der Neutronenbeugung ideal geeignet: Die beiden Elemente (Cu+ und Zn2+) lassen sich mit Neutronen sehr gut voneinander unterscheiden, was mittels konventioneller Röntgendiffraktometrie nicht der Fall ist. Das Team hat 29 CZTSe-Pulverproben untersucht und an den Neutronenquellen SNS am Oak Ridge National Laboratory, USA,  und am BER II des HZB Experimente durchgeführt. Dabei gelang es ihnen, verschiedene Defekt-Typen genau zu katalogisieren. So konnten sie Plätze in der Kristallstruktur identifizieren, auf denen ein Kupferatom fehlte (Kupfer-Leerstellen, VCu), aber auch Plätze, die statt mit dem vorgesehenen Element mit einem anderen besetzt waren, zum Beispiel einem Zink-Atom anstelle eines Zinn-Atoms ("ZnSn anti site").

Unordnung "ausheizen"

Neben den Punktdefekten, deren Auftreten durch Stöchiometrieabweichungen erklärt werden kann, spielt auch die sogenannte Cu/Zn Unordnung (hier besetzten ein Teil der Kupferatome Zinkplätze in der Kristallstruktur und umgekehrt) eine wichtige Rolle. Diese Unordnung kann durch eine Temperaturbehandlung (Annealing) reduziert werden, was sich wiederum positiv auf die Effizienz einer CZTSe-basierten Solarzelle auswirken kann.

Hinweise für weitere Optimierung

„Tatsächlich stimmen die experimentell ermittelten Punktdefekte recht gut mit dem theoretischen Modell zu möglichen Defekten überein“, erklärt Gurieva. „Wir können aus dieser Studie konkrete Hinweise ableiten, welche Art und Konzentration von Punktdefekten in einer gegebenen Zusammensetzung der Kesterit-Dünnschichten erwartet werden können. Dies hilft dabei,  Kesterit-basierte Solarzellen gezielt zu optimieren“, sagt Gurieva.

 

Zur Publikation im Journal of Applied Physics (2018): Intrinsic point defects in off-stoichiometric Cu2ZnSnSe4; Galina Gurieva, Laura Elisa Valle Rios, Alexandra Franz, Pamela Whitfield, Susan Schorr.

DOI:10.1063/1.4997402

 


arö


           



Das könnte Sie auch interessieren
  • <p>Die Illustration zeigt eine Verbindung, in deren Zentrum ein Eisen-Atom sitzt. Es ist von 4 CN-Gruppen und einem Bipyridin Molek&uuml;l umgeben. Das h&ouml;chste besetzte Eisenorbital ist als gr&uuml;n-rote Wolke dargestellt. Sobald eine Cyangruppe da ist, beobachtet man wie sich die &auml;u&szlig;eren Eisenorbitale delokalisieren, sodass auch um die Stickstoffatome Elektronen dicht vorhanden sind. Bild. T. Splettst&ouml;&szlig;er/HZB</p>SCIENCE HIGHLIGHT      14.11.2018

    Übergangsmetallkomplexe: Gemischt geht's besser

    Ein Team hat an BESSY II untersucht, wie unterschiedliche Eisenkomplex-Verbindungen Energie aus eingestrahltem Licht verarbeiten. Dabei konnten sie zeigen, warum bestimmte Verbindungen das Potenzial haben, Licht in elektrische Energie umzuwandeln. Die Ergebnisse sind für die Entwicklung von organischen Solarzellen interessant. Die Studie wird auf dem Cover der Fachzeitschrift PCCP angekündigt. [...]


  • <p></p> <p>Die REM-Aufnahme zeigt den Querschnitt durch eine Silizium-Perowskit-Tandemsolarzelle.</p>SCIENCE HIGHLIGHT      12.11.2018

    Neue Rekorde bei Perowskit-Silizium-Tandemsolarzellen durch verbesserten Lichteinfang

    Durch mikrostrukturierte Schichten konnte ein HZB-Team den Wirkungsgrad von Perowskit-Silizium-Tandemsolarzellen auf aktuell 25,5 Prozent steigern, dem höchsten Wert, der bis jetzt publiziert werden konnte. Gleichzeitig gelang es mit Hilfe von rechnerischen Simulationen, die Lichtumwandlung in verschiedenen Zelldesigns zu untersuchen. Diese Modellierungen ermöglichen die Optimierung des Lichtmanagements sowie detaillierte Ertragsanalysen. Die Studie wurde nun in Energy & Environmental Science publiziert. [...]


  • <p>Andriy Zakutayev (NREL) hat Fredrike Lehmann im Namen der Jury&nbsp; f&uuml;r ihren Posterbeitrag auf der ICTMC-21 in Boulder, Colorado, USA, einen Preis &uuml;berreicht. Bild. Privat</p>NACHRICHT      19.10.2018

    Posterpreis an HZB-Doktorandin

    Frederike Lehmann aus der HZB-Abteilung Struktur und Dynamik von Energiematerialien hat auf einer internationalen Fachkonferenz, der ICTMC-21 in Boulder, Colorado, USA, einen Posterpreis erhalten. Sie stellte ihre Ergebnisse zur Synthese und Charakterisierung von Hybrid-Perowskit-Materialien vor, die als interessante Kandidaten für neuartige Solarzellen gelten. [...]




Newsletter