Solar energy: Defects in Kesterite semiconductors studied using neutrons

Backscattered electron micrograph of kesterite powder. Grey grains are attributed to CZTSe. Black background is the epoxy matrix.

Backscattered electron micrograph of kesterite powder. Grey grains are attributed to CZTSe. Black background is the epoxy matrix. © HZB

<p class="MsoCaption">Degree of the Cu/Zn disorder of the kesterite phase according with the cation ratios Cu/(Zn+Sn) and Zn/Sn. <em></em>

Degree of the Cu/Zn disorder of the kesterite phase according with the cation ratios Cu/(Zn+Sn) and Zn/Sn. © HZB

A research team at the HZB has precisely characterised for the first time the various types of defects in kesterite semiconductors. They achieved this with the help of neutron scattering at the BER II research reactor and at Oak Ridge National Laboratory in the USA. The findings point to a means of guided optimisation for kesterite solar cells.

Kesterites are an economical and environmentally friendly materials which are semiconducting as well as being able to convert light into electricity. Concerning their crystal structure, kesterites resemble species of chalcopyrite semiconductors with the chemical formula Cu(In,Ga)Se2. In kesterites such as Cu2ZnSnSe4 (CZTSe) though, the rare-earth elements indium and gallium are replaced by zinc and tin, which are abundant in the earth’s crust and are far less expensive. Currently, the best kesterite-based thin film solar cells achieve an efficiency levels of up to 12.6 per cent with the kesterite layer only one micron thick. They are therefore interesting candidates for highly cost-effective as well as flexible solar modules that are non-toxic and robust. Even though single-crystal silicon solar cells or thin layers of chalcopyrite achieve efficiency levels of far more than 20 per cent, these are considerably more expensive.

Some defects may increase efficiencies

The highest efficiency levels are achieved in kesterite-thin film solar cells with CZTSe-absorber layers that contain somewhat less copper in comparison to the chemical formula and somewhat more zinc, i.e. present a copper-poor/zinc-rich composition. This kind of stoichiometric deviation leads to defect sites in the crystal structure that apparently increase the efficiency level, though. “We have now precisely characterised these defect sites and ascertained their local concentrations with the help of neutron diffraction experiments”, explains Dr. Galina Gurieva from the HZB Structure and Dynamics of Energy Materials group.  

Neutron diffraction to catalogue defect types

Neutron diffraction is the ideally suited method for this purpose. The two elements (Cu+ and Zn2+) can be extremely well differentiated from one another using neutrons, which is not the case for conventional X-ray diffraction studies. The team investigated 29 different CZTSe powder samples using the neutron sources SNS at Oak Ridge National Laboratory (USA) and BER II at the HZB. They were successful in their effort to exactly catalogue various defect types. For instance, they were able to identify sites in the crystal structure at which a copper atom was missing (copper vacancies, VCu), as well as sites that were occupied by another element instead of the anticipated element, such as a zinc atom in place of a tin atom (ZnSn anti site).

Annealing disorder

Beside the presence of point defects, which can be explained via stoichiometry deviations, the so called Copper/Zinc disorder plays an important role as well: Disorder means that copper atoms are sitting on Zinc sites in the crystal structure and vice versa. This disorder can be reduced via a heat treatment (annealing), which enhances often the efficiency of CZTSe based solar cells.

Concrete clues for further optimisation

 “The point defects we investigated experimentally really correspond quite well to the theoretical model of potential defects”, declared Gurieva. “We can deduce concrete clues from this study as to which point defects in which concentration to expect in the given composition of kesterite thin films ”, says Gurieva. “This may help to optimise kesterite based solar cells further.”

 

Publication in Journal of Applied Physics (2018): Intrinsic point defects in off-stoichiometric Cu2ZnSnSe4; Galina Gurieva, Laura Elisa Valle Rios, Alexandra Franz, Pamela Whitfield, Susan Schorr.

DOI:10.1063/1.4997402

 

arö

  • Copy link

You might also be interested in

  • New instrument at BESSY II: The OÆSE endstation in EMIL
    Science Highlight
    23.04.2025
    New instrument at BESSY II: The OÆSE endstation in EMIL
    A new instrument is now available at BESSY II for investigating catalyst materials, battery electrodes and other energy devices under operating conditions: the Operando Absorption and Emission Spectroscopy on EMIL (OÆSE) endstation in the Energy Materials In-situ Laboratory Berlin (EMIL). A team led by Raul Garcia-Diez and Marcus Bär showcases the instrument’s capabilities via a proof-of-concept study on electrodeposited copper.
  • Solar cells on moon glass for a future base on the moon
    Science Highlight
    07.04.2025
    Solar cells on moon glass for a future base on the moon
    Future settlements on the moon will need energy, which could be supplied by photovoltaics. However, launching material into space is expensive – transporting one kilogram to the moon costs one million euros. But there are also resources on the moon that can be used. A research team led by Dr. Felix Lang of the University of Potsdam and Dr. Stefan Linke of the Technical University of Berlin have now produced the required glass from ‘moon dust’ (regolith) and coated it with perovskite. This could save up to 99 percent of the weight needed to produce PV modules on the moon. The team tested the radiation tolerance of the solar cells at the proton accelerator of the HZB.
  • Optical innovations for solar modules - which are the most promising?
    Science Highlight
    28.03.2025
    Optical innovations for solar modules - which are the most promising?
    In 2023, photovoltaic systems generated more than 5% of the world’s electrical energy and the installed capacity doubles every two to three years. Optical technologies can further increase the efficiency of solar modules and open up new applications, such as coloured solar modules for facades. Now, 27 experts provide a comprehensive overview of the state of research and assess the most promising innovations. The report, which is also of interest to stakeholders in funding and science management, was coordinated by HZB scientists Prof. Christiane Becker and Dr. Klaus Jäger.