Progress in solar technologies – from research to application

EU group project presents its results: high efficiencies with less material

A workshop entitled "European Solar Technology Forum – from Research to Industrial Application" took place at HZB to conclude of the European CHEETAH project on November 30, 2017. More than 100 participants from the most important European research institutes in the field of photovoltaics and from numerous universities came together with representatives from industry in order to discuss the progress achieved by CHEETAH.

Three different types of soclar cells have been greatly improved:

Silicon photovoltaics: wafer thickness cut by half

Efforts in the field of silicon photovoltaics have been directed towards the use of ever-thinner wafers in manufacturing photovoltaic modules. Several modules whose cells were 90-100 microns thick were presented at the workshop. These enable considerable savings in materials compared to standard modules with cell thicknesses of 180 microns.

Reducing material consumption in chalcopyrite solar cells by implementing an integrated lens system.

The approach to saving materials in thin-film solar cells made of chalkopyrites (Cu(In,Ga)Se2) was different: the cells were reduced in area and an integrated lens system incorporated into the module to concentrate the sunlight irradiating the cells. The goal is to achieve an efficiency level at least as high as that of current commercial modules while using considerably less material. The first prototypes already demonstrate that the method works in principle and can even reach higher efficiency levels than standard cells under certain circumstances due to the higher light intensity.

Extending the operating life of hybrid solar cells

The third topic in CHEETAH involved organic and hybrid solar cells. In this part of the project, polymer encapsulation materials were measured in an extensive series of tests and correlated with the operating life of the cells. The operating life of these solar cells could be increased to several years using the best of these polymers.

The presentations can be viewed here

 

Iver Lauermann

  • Copy link

You might also be interested in

  • Battery research: visualisation of aging processes operando
    Science Highlight
    29.04.2025
    Battery research: visualisation of aging processes operando
    Lithium button cells with electrodes made of nickel-manganese-cobalt oxides (NMC) are very powerful. Unfortunately, their capacity decreases over time. Now, for the first time, a team has used a non-destructive method to observe how the elemental composition of the individual layers in a button cell changes during charging cycles. The study, now published in the journal Small, involved teams from the Physikalisch-Technische Bundesanstalt (PTB), the University of Münster, researchers from the SyncLab research group at HZB and the BLiX laboratory at the Technical University of Berlin. Measurements were carried out in the BLiX laboratory and at the BESSY II synchrotron radiation source.
  • New instrument at BESSY II: The OÆSE endstation in EMIL
    Science Highlight
    23.04.2025
    New instrument at BESSY II: The OÆSE endstation in EMIL
    A new instrument is now available at BESSY II for investigating catalyst materials, battery electrodes and other energy devices under operating conditions: the Operando Absorption and Emission Spectroscopy on EMIL (OÆSE) endstation in the Energy Materials In-situ Laboratory Berlin (EMIL). A team led by Raul Garcia-Diez and Marcus Bär showcases the instrument’s capabilities via a proof-of-concept study on electrodeposited copper.
  • An elegant method for the detection of single spins using photovoltage
    Science Highlight
    14.04.2025
    An elegant method for the detection of single spins using photovoltage
    Diamonds with certain optically active defects can be used as highly sensitive sensors or qubits for quantum computers, where the quantum information is stored in the electron spin state of these colour centres. However, the spin states have to be read out optically, which is often experimentally complex. Now, a team at HZB has developed an elegant method using a photo voltage to detect the individual and local spin states of these defects. This could lead to a much more compact design of quantum sensors.