Neues Röntgenspektrometer ermöglicht es, Einzelschritte der Photosynthese zu beobachten

Schema des Photosystems II.

Schema des Photosystems II. © SLAC

HZB Wissenschaftler haben an BESSY II ein neuartiges Spektrometer entwickelt, das detaillierte Einblicke in Katalyse-Prozesse an Metall-Enzymen ermöglicht. In internationaler Zusammenarbeit gelang es ihnen, einzelne Prozesse im Photosystem II aufzuklären. Ihre Studie haben sie nun in der Zeitschrift Structural Dynamics veröffentlicht. Das Photosystem II gehört zur Photosynthese, die u.a. in Pflanzen und Algen stattfindet und Sonnenenergie in chemische Energie umwandelt.

Das Photosystem II ist ein großer Proteinkomplex, in dessen Zentrum vier Mangan-Atome und ein Calcium-Atom sitzen. Sonnenlicht setzt in diesem Proteinkomplex einen Prozess in Gang, der  Wasser in Sauerstoff, Protonen und Elektronen aufspaltet, mit deren Hilfe wiederum die für das Leben auf der Erde essentiellen Kohlehydrate erzeugt werden.

Eine der großen Herausforderungen bei der Aufklärung dieses Prozesses ist es, die einzelnen Zwischenschritte experimentell zu beobachten. Bislang war es insbesondere nicht möglich, Röntgenspektroskopie an Photosystem II im für BESSY II charakteristischen Energiebereich der sogenannten weichen Röntgenstrahlung durchzuführen. Denn die erwarteten Signale sind sehr klein und biologische Proben sind sehr empfindlich für Strahlenschäden. „Bisher war es nicht möglich, die Mangan-Atome experimentell "abzutasten"“, erklärt Dr. Philippe Wernet vom HZB.

Nun konnte eine internationale Kooperation mit dem HZB und mit führenden Gruppen der Photosystem II Forschung um Junko Yano in Berkeley, USA, und anderen in den USA, Schweden und Frankreich am Freien Elektronenlaser LCLS in Stanford, USA, einen deutlichen Fortschritt erreichen.

Spektrometer aus dem HZB

Dafür setzten sie ein neuartiges Spektrometer ein, das am HZB entwickelt und getestet wurde. Es enthält eine ebenfalls am HZB entwickelte Reflexionszonenplatte als „Linse“ für das Röntgenlicht. Damit war es erstmals möglich, organische Metall-Enzyme bei ihren geringen Konzentrationen in Lösung, also in ihrer natürlichen Umgebung, mit weicher Röntgenstrahlung zu untersuchen.

Zwei Zwischenschritte bei der Wasserspaltung

Insbesondere interessierten sich die Forschungsteams dafür, wie sich die elektronische Struktur der Mangan-Atome verändert, die im Zentrum des Enzyms sitzen. Denn darüber lassen sich die Zwischenschritte bis zur Wasserspaltung gut identifizieren. Tatsächlich konnten sie zeigen, dass die neue Methode geeignet ist, die Mangan-Atome im Photosystem II direkt abzutasten. Damit konnten sie bereits zwei Zwischenschritte dingfest machen.

„Mit unserer Methode können wir genau untersuchen, wie die Natur es anstellt, u.a. in Blättern oder Algen so erfolgreich Sonnenenergie in chemische Energie umzuwandeln“, sagt Markus Kubin, HZB, Erstautor der Studie, die im September in der Zeitschrift Structural Dynamics veröffentlicht wurde.

Spektrometer auch für andere Katalysatorkomplexe geeignet

Mit dem neu entwickelten Spektrometer lassen sich auch andere empfindliche Katalysatorkomplexe in biologischen oder technischen Systemen untersuchen.

 

Zur Publikation in Structural Dynamics 4, 054307 (2017);Soft X-ray Absorption Spectroscopy of Metalloproteins and High-Valent Metal-Complexes at Room Temperature Using Free-Electron Lasers; Markus Kubin, Jan Kern, Sheraz Gul, Thomas Kroll, Ruchira Chatterjee, Heike Löchel, Franklin D. Fuller, Raymond G. Sierra, Wilson Quevedo, Christian Weniger, Jens Rehanek, Anatoly Firsov, Hartawan Laksmono, Clemens Weninger, Roberto Alonso-Mori, Dennis L. Nordlund, Benedikt Lassalle-Kaiser, James M. Glownia, Jacek Krzywinski, Stefan Moellerc, Joshua J. Turnerc, Michael P. Minittic, Georgi L. Dakovskic, Sergey Koroidovf,h, Anurag Kawdeh, Jacob S. Kanady, Emily Y. Tsui, Sandy Suseno, Zhiji Han, Ethan Hill, Taketo Taguchi, Andrew S. Borovik, Theodor Agapie, Johannes Messinger, Alexei Erko, Alexander Föhlisch, Uwe Bergmann, Rolf Mitzner, Vittal K. Yachandra, Junko Yano, Philippe Wernet

doi: 10.1063/1.4986627

 

red./arö

  • Link kopieren

Das könnte Sie auch interessieren

  • BESSY II: Phosphorketten – ein 1D-Material mit 1D elektronischen Eigenschaften
    Science Highlight
    21.10.2025
    BESSY II: Phosphorketten – ein 1D-Material mit 1D elektronischen Eigenschaften
    Erstmals ist es einem Team an BESSY II gelungen, experimentell eindimensionale elektronische Eigenschaften in einem Material nachzuweisen. Die Proben bestanden aus kurzen Ketten aus Phosphoratomen, die sich auf einem Silbersubstrat selbst organisiert in bestimmten Winkeln bilden. Durch eine raffinierte Auswertung gelang es, die Beiträge von unterschiedlich ausgerichteten Ketten voneinander zu trennen und zu zeigen, dass die elektronischen Eigenschaften tatsächlich einen eindimensionalen Charakter besitzen. Berechnungen zeigten darüber hinaus, dass ein spannender Phasenübergang zu erwarten ist. Während das Material aus einzelnen Ketten halbleitend ist, wäre eine sehr dichte Kettenstruktur metallisch.
  • Ein innerer Kompass für Meereslebewesen im Paläozän
    Science Highlight
    20.10.2025
    Ein innerer Kompass für Meereslebewesen im Paläozän
    Vor Jahrmillionen produzierten einige Meeresorganismen mysteriöse Magnetpartikel von ungewöhnlicher Größe, die heute als Fossilien in Sedimenten zu finden sind. Nun ist es einem internationalen Team gelungen, die magnetischen Domänen auf einem dieser „Riesenmagnetfossilien” mit einer raffinierten Methode an der Diamond-Röntgenquelle zu kartieren. Ihre Analyse zeigt, dass diese Partikel es den Organismen ermöglicht haben könnten, winzige Schwankungen sowohl in der Richtung als auch in der Intensität des Erdmagnetfelds wahrzunehmen. Dadurch konnten sie sich verorten und über den Ozean navigieren. Die neue Methode eignet sich auch, um zu testen, ob bestimmte Eisenoxidpartikel in Marsproben tatsächlich biogenen Ursprungs sind.
  • Was vibrierende Moleküle über die Zellbiologie verraten
    Science Highlight
    16.10.2025
    Was vibrierende Moleküle über die Zellbiologie verraten
    Mit Infrarot-Vibrationsspektroskopie an BESSY II lassen sich hochaufgelöste Karten von Molekülen in lebenden Zellen und Zellorganellen in ihrer natürlichen wässrigen Umgebung erstellen, zeigt eine neue Studie von einem Team aus HZB und Humboldt-Universität zu Berlin. Die Nano-IR-Spektroskopie mit SNOM an der IRIS-Beamline eignet sich, um winzige biologische Proben zu untersuchen und Infrarotbilder der Molekülschwingungen mit Nanometer-Auflösung zu erzeugen. Es ist sogar möglich, 3D-Informationen, also Infrarot-Tomogramme, aufzuzeichnen. Um das Verfahren zu testen, hat das Team Fibroblasten auf einer hochtransparenten SiC-Membran gezüchtet und in vivo untersucht. Die Methode ermöglicht neue Einblicke in die Zellbiologie.