Keywords: solar energy (252) cooperations (145) technology transfer (49)

News    09.01.2018

Oxford PV collaborates with HZB to move perovskite solar cells closer to commercialisation

Oxford PV – The Perovskite Company's industrial site in Brandenburg an der Havel, Germany where the company is working rapidly to transfer its advanced perovskite on silicon tandem solar cell technology to an industrial scale process.
Copyright: Oxford PV

Perovskite solar technology leader Oxford PV collaborates with leading German research centre to support the accelerated transfer of its technology into silicon cell manufacturing lines.

Oxford PVTM – The Perovskite CompanyTM, the leader in the field of perovskite solar cells, today announced its collaboration with Helmholtz-Zentrum Berlin (HZB), the leading German research centre focused on energy materials research.

Oxford PV has made considerable progress in transferring its advanced perovskite on silicon tandem solar cell technology from its laboratory in Oxford, UK to an industrial scale process at its site in Brandenburg an der Havel, Germany.

HZB’s extensive expertise in silicon heterojunctions solar cell technology, will support Oxford PV to further optimise its perovskite on silicon tandem solar cell technology, and demonstrate production scale up, to ensure ease of integration into large scale silicon solar cell and module production.

“Working with HZB to understand solar cell manufacturers’ silicon cells, will allow Oxford PV’s perovskite on silicon tandem formation to be fully optimised, to ensure the most efficient tandem solar cell, and the easy transfer of our technology into our commercial partner’s industrial processes, commented Chris Case, Chief Technology Officer, at Oxford PV,

“Oxford PV is now in the final stage of commercialising its perovskite photovoltaic solution, which has the potential to enable efficiency gains that will transform the economics of silicon photovoltaic technology globally.”

Rutger Schlatmann, Director of the PVcomB institute at HZB, said, “HZB believe that perovskites present a significant opportunity to the future of photovoltaics. For this reason, at our new innovation lab - HySPRINT, we have significantly increased our expertise and attracted some of the most promising young scientists in this field. HZB’s collaboration with Oxford PV is strategically important to the institute, as Oxford PV is the ideal partner to further develop our solar cell technology knowledge and help support the commercialisation of tandem silicon perovskite photovoltaic cells.”

More Information:

  • Oxford PV
  • PVcomB
  • HySPRINT-a Helmholtz Innovation Lab

Oxford PV/HZB


           



You might also be interested in
  • SCIENCE HIGHLIGHT      10.07.2019

    Oldest completely preserved lily discovered

    Already 115 million years ago, tropical flowering plants were apparently very diverse and showed all typical characteristics. This is the conclusion of an international team of researchers led by Clément Coiffard, Museum für Naturkunde Berlin. The team reported in the renowned journal Nature Plants on the oldest completely preserved lily, Cratolirion bognerianum, which was discovered at a site in present-day Brazil. With the help of 3D computer tomography at the Helmholtz-Zentrum Berlin, details on the back of the fossilised plant could also be analysed. The results raise new questions about the role of the tropics in the development of past and present ecosystems. [...]


  • <p>An X-ray pulse probes the delocalization of iron 3d electrons onto adjacent ligands.</p>SCIENCE HIGHLIGHT      09.07.2019

    Charge transfer within transition-metal dyes analysed

    Transition-metal complexes in dye-based solar cells are responsible for converting light into electrical energy. A model of spatial charge separation within the molecule has been used to describe this conversion. However, an analysis at BESSY II shows that this description of the process is too simple. For the first time, a team there has investigated the fundamental photochemical processes around the metal atom and its ligands. The study has now been published in “Angewandte Chemie, international Edition” and is displayed on the cover. [...]




Newsletter