Joint graduate school for data science sponsors its first projects
The Helmholtz Association, the Einstein Center Digital Future (ECDF) and the universities of Berlin are creating a new PhD programme in Berlin for the field of data science. Helmholtz-Zentrum Berlin is involved in several of the projects. The first training positions are already advertised.
The international graduate school HEIBRiDS is being funded with six million euros. It aims at training PhD students who are researching matters that demand not only great expertise in computer science but also specialised knowledge in other disciplines. The PhD students will acquire a deep understanding of the complex relationships between specialised knowledge, algorithmic skills and application-oriented methodologies.
The graduate school will offer at least 25 doctoral students four years of training. Being organised across several locations, the PhD students can benefit from joint educational offerings and a networked research environment. The interdisciplinary subjects are overseen by supervisor teams comprising one researcher from the Helmholtz Association and one from the Einstein Center ECDF. This year, HZB offers at least two doctoral positions.
The graduate school will draw on the participating institutions’ scientific expertise. Within the Helmholtz centres of the capital region, this expertise spans the fields of medicine, energy research, transportation, geosciences and climatology. The Einstein Center Digital Future researches the core technologies of digitalisation, from digital health and digital industry to the digital humanities.
Application
Click here to see the advertised PhD projects of HEIBRiDS (central recruitment for all Helmholtz-Centers will be managed through the MDC website). Please apply by March 3, 2018.
(sz)
https://www.helmholtz-berlin.de/pubbin/news_seite?nid=14781;sprache=en
- Copy link
-
Mesoporous silicon: Semiconductor with new talents
Silicon is the best-known semiconductor material. However, controlled nanostructuring drastically alters the material's properties. Using a specially developed etching apparatus, a team at HZB has now produced mesoporous silicon layers with countless tiny pores and investigated their electrical and thermal conductivity. For the first time, the researchers elucidated the electronic transport mechanism in this mesoporous silicon. The material has great potential for applications and could also be used to thermally insulate qubits for quantum computers.
-
Innovative battery electrode made from tin foam
Metal-based electrodes in lithium-ion batteries promise significantly higher capacities than conventional graphite electrodes. Unfortunately, they degrade due to mechanical stress during charging and discharging cycles. A team at HZB has now shown that a highly porous tin foam is much better at absorbing mechanical stress during charging cycles. This makes tin foam an interesting material for lithium batteries.
-
Perovskite solar cells: thermal stress is the key to their long term stability
Perovskite solar cells are highly efficient and low cost in production. However, they still lack stability over the decades under real weather conditions. An international research collaboration led by Prof. Antonio Abate has now published a perspective on this topic in the journal Nature Reviews Materials. They explored the effects of multiple thermal cycles on microstructures and interactions between different layers of perovskite solar cells. They conclude that thermal stress is the decisive factor in the degradation of metal-halide perovskites. Based on this, they derive the most promising strategies to increase the long-term stability of perovskite solar cells.