Verborgene Talente: Mit Bleistift und Papier Wärme in Strom umwandeln

Ein normaler HB-Bleistift und Büropapier reichen aus, um - kombiniert mit einem leitfähigen Kunststofflack- ein thermoelektrisches Element zu bauen. Bild. HZB

Ein normaler HB-Bleistift und Büropapier reichen aus, um - kombiniert mit einem leitfähigen Kunststofflack- ein thermoelektrisches Element zu bauen. Bild. HZB © HZB

Der Bleistiftabrieb unter dem Elektronenmikroskop.

Der Bleistiftabrieb unter dem Elektronenmikroskop. © HZB

Skizze des Versuchsaufbaus.

Skizze des Versuchsaufbaus. © HZB

Thermoelektrische Materialien können Wärmeunterschiede zur Stromerzeugung nutzen. Nun gibt es eine preiswerte und umweltfreundliche Lösung, um sie mit einfachsten Zutaten herzustellen: Ein normaler Bleistift, Kopierpapier und ein leitfähiger Kunststofflack reichen aus, um eine Temperaturdifferenz über den thermoelektrischen Effekt in Strom umzuwandeln. Dies hat nun ein Team am Helmholtz-Zentrum Berlin demonstriert.

Der thermoelektrische Effekt ist keine Neuigkeit, sondern wurde vor fast 200 Jahren von Thomas J. Seebeck entdeckt: Bringt man zwei unterschiedliche Metalle zusammen, dann kann eine elektrische Spannung entstehen, wenn ein Metall wärmer ist als das andere. Über diesen Effekt lässt sich Restwärme teilweise in elektrische Energie umwandeln. Restwärme entsteht als Nebenprodukt bei fast allen technischen und natürlichen Prozessen, zum Beispiel in Kraftwerken und jedem Haushalt, aber auch im menschlichen Körper. Sie ist eine der größten ungenutzten Energiequellen auf der Erde - meist verpufft sie. Winziger Effekt

Leider ist dieser an sich so nützliche Effekt in normalen Metallen extrem klein. Denn Metalle besitzen nicht nur eine hohe Leitfähigkeit für Strom, sondern ebenso für Wärme, sodass Unterschiede in der Temperatur sofort verschwinden. Thermoelektrische Materialien müssen also trotz hoher elektrischer Leitfähigkeit eine geringe Wärmeleitfähigkeit haben. In der Technik werden heute schon stellenweise Thermoelektrika aus anorganischen Halbleitermaterialien wie Bismuttellurid eingesetzt. Allerdings sind solche Materialsysteme teuer und ihr Einsatz rentiert sich nur punktuell. Darüber hinaus werden für den Einsatz am menschlichen Körper auch flexible, ungiftige organische Materialien erforscht, zum Beispiel basierend auf Nanostrukturen aus Kohlenstoff. 

HB-Bleistift und Kunststofflack

Dass es auch viel einfacher geht, hat nun ein Team um Prof. Norbert Nickel am HZB gezeigt: Mit einem normalen Bleistift, Härtegrad HB, zeichneten sie auf gewöhnlichem Kopierpapier eine kleine Fläche aus. Als zweites Material pinselten sie einen transparenten, leitfähigen Kunststofflack (PEDOT:PSS) auf.

Konkret liefern die Bleistift-Proben (Graphit) bei einem Temperaturunterschied von 50 Grad Celsius etwa eine Spannung von 0,875 Millivolt. Dieses Ergebnis ist vergleichbar zu anderen, weitaus teureren Nanokompositen, die bisher für biegsame thermoelektrische Elemente genutzt werden. Und dieser Wert ließ sich verzehnfachen, indem sie dem Graphit etwas Indium-Selenid zusetzen.

Schlechter Wärmetransport erklärt

Unter dem Rasterelektronenmikroskop und mit spektroskopischen Methoden (Raman-Streuung) am HZB untersuchten die Forscher die Graphit- und Kunststofflack-Filme. „Die Ergebnisse waren für uns auch sehr überraschend“, erklärt Nickel. „Aber wir haben nun eine Erklärung gefunden, warum dies so gut funktioniert: Der Bleistiftabrieb bildet auf dem Papier eine Fläche aus ungeordneten Graphitflocken, etwas Graphen und Lehm. Während dies die elektrische Leitfähigkeit nur wenig reduziert, kann Wärme deutlich schlechter transportiert werden.“

Ausblick: Flexible Bauelemente auf Papier gedruckt

Mit diesen einfachen Zutaten könnten sich künftig thermoelektrische Baulemente auf Papier drucken lassen, die äußerst preiswert, umweltfreundlich und ungiftig sind. Solche winzigen und biegsamen Bauelemente wären auch direkt am Körper einsetzbar und könnten die Körperwärme nutzen, um kleine Geräte oder Sensoren zu betreiben.

Zur Publikation in ACS Appl. Mater. Interfaces (2018): "Fine Art of Thermoelectricity", Viktor Brus, Marc A. Gluba, Joerg Rappich, Felix Lang, Pavlo Maryanchuk, and Norbert H. Nickel.

DOI: 10.1021/acsami.7b17491

Die Arbeit wurde von der American Chemical Society (ACS) mit dem Editors' Choice Award ausgezeichnet und steht jetzt Open Access allen Leserinnen und Lesern zur Verfügung.

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • BESSY II: Phosphorketten – ein 1D-Material mit 1D elektronischen Eigenschaften
    Science Highlight
    21.10.2025
    BESSY II: Phosphorketten – ein 1D-Material mit 1D elektronischen Eigenschaften
    Erstmals ist es einem Team an BESSY II gelungen, experimentell eindimensionale elektronische Eigenschaften in einem Material nachzuweisen. Die Proben bestanden aus kurzen Ketten aus Phosphoratomen, die sich auf einem Silbersubstrat selbst organisiert in bestimmten Winkeln bilden. Durch eine raffinierte Auswertung gelang es, die Beiträge von unterschiedlich ausgerichteten Ketten voneinander zu trennen und zu zeigen, dass die elektronischen Eigenschaften tatsächlich einen eindimensionalen Charakter besitzen. Berechnungen zeigten darüber hinaus, dass ein spannender Phasenübergang zu erwarten ist. Während das Material aus einzelnen Ketten halbleitend ist, wäre eine sehr dichte Kettenstruktur metallisch.
  • Ein innerer Kompass für Meereslebewesen im Paläozän
    Science Highlight
    20.10.2025
    Ein innerer Kompass für Meereslebewesen im Paläozän
    Vor Jahrmillionen produzierten einige Meeresorganismen mysteriöse Magnetpartikel von ungewöhnlicher Größe, die heute als Fossilien in Sedimenten zu finden sind. Nun ist es einem internationalen Team gelungen, die magnetischen Domänen auf einem dieser „Riesenmagnetfossilien” mit einer raffinierten Methode an der Diamond-Röntgenquelle zu kartieren. Ihre Analyse zeigt, dass diese Partikel es den Organismen ermöglicht haben könnten, winzige Schwankungen sowohl in der Richtung als auch in der Intensität des Erdmagnetfelds wahrzunehmen. Dadurch konnten sie sich verorten und über den Ozean navigieren. Die neue Methode eignet sich auch, um zu testen, ob bestimmte Eisenoxidpartikel in Marsproben tatsächlich biogenen Ursprungs sind.
  • Was vibrierende Moleküle über die Zellbiologie verraten
    Science Highlight
    16.10.2025
    Was vibrierende Moleküle über die Zellbiologie verraten
    Mit Infrarot-Vibrationsspektroskopie an BESSY II lassen sich hochaufgelöste Karten von Molekülen in lebenden Zellen und Zellorganellen in ihrer natürlichen wässrigen Umgebung erstellen, zeigt eine neue Studie von einem Team aus HZB und Humboldt-Universität zu Berlin. Die Nano-IR-Spektroskopie mit SNOM an der IRIS-Beamline eignet sich, um winzige biologische Proben zu untersuchen und Infrarotbilder der Molekülschwingungen mit Nanometer-Auflösung zu erzeugen. Es ist sogar möglich, 3D-Informationen, also Infrarot-Tomogramme, aufzuzeichnen. Um das Verfahren zu testen, hat das Team Fibroblasten auf einer hochtransparenten SiC-Membran gezüchtet und in vivo untersucht. Die Methode ermöglicht neue Einblicke in die Zellbiologie.