Leuchtende Nanoarchitekturen aus Galliumarsenid

Der GaAs-Nanokristall hat sich als Dodekaeder auf einer Silizium-Germanium-Nadel abgeschieden, zeigt diese Rasterelektronenmikroskopie. Zur besseren Unterscheidbarkeit sind die rhombischen Außenflächen eingefärbt.

Der GaAs-Nanokristall hat sich als Dodekaeder auf einer Silizium-Germanium-Nadel abgeschieden, zeigt diese Rasterelektronenmikroskopie. Zur besseren Unterscheidbarkeit sind die rhombischen Außenflächen eingefärbt. © S. Schmitt/HZB

Hier sind die sechs optische Resonanzmoden gezeigt, die in einem Rhombendodekaeder entlang zwei verschiedener Querschnitte möglich sind.

Hier sind die sechs optische Resonanzmoden gezeigt, die in einem Rhombendodekaeder entlang zwei verschiedener Querschnitte möglich sind. © HZB

Einem Team am HZB ist es gelungen, Nanokristalle aus Galliumarsenid auf winzigen Säulen aus Silizium und Germanium aufzuwachsen. Damit lassen sich auf der Basis von Siliziumchips sehr effiziente Bauelemente in für die Optoelektronik interessanten Frequenzbereichen realisieren.

Halbleiter aus Galliumarsenid besitzen im Vergleich zu Silizium deutlich bessere optoelektronische Eigenschaften. Diese Eigenschaften lassen sich mit Nanostrukturierungen gezielt beeinflussen. Eine besonders interessante Nanostrukturierung ist nun dem Team um Dr. Sebastian Schmitt und Prof. Dr. Silke Christiansen gelungen. Aus Australien hatten sie einen Silizium-Wafer erhalten, der mit einer überraschend kristallinen Germaniumschicht bedeckt war. Germanium besitzt nahezu die gleiche Gitterkonstante wie Galliumarsenid und bietet sich daher als ideale Unterlage an.

Nanokristalle auf Nadeln

In diesen Wafer ätzten sie im Abstand von einigen Mikrometern tiefe Gräben ein, bis nur noch eine Reihe feiner Siliziumsäulen mit einem Häubchen aus Germanium auf dem Substrat stehenblieb. Galliumarsenid wurde dann mit metallorganischer Gasphasenepitaxie abgeschieden. So lagerten sich systematisch Gallium- und Arsenatome auf dem Germaniumhäubchen ab, und bildeten einen winzigen, nahezu perfekten Kristall. „Das Germanium wirkt hier wie ein Kristallisationskeim“, erklärt Schmitt, Erstautor der Arbeit, die nun in Advanced Optical Materials erschienen ist.

Die Nanoarchitektur sieht unter dem Elektronenmikroskop spektakulär aus. Auf den ersten Blick meint man, auf jeder Siliziumnadel einen Würfel zu erkennen, der auf der Spitze steht. Auf den zweiten Blick zeigt sich: Es ist in Wirklichkeit ein Rhombendodekaeder - jede der zwölf Flächen ein identischer Rhombus.  

Entscheidende Parameter: Geometrie und Größe

Tatsächlich zeigte diese Nano-Struktur nach Anregung mit einem Laser eine außergewöhnlich starke Lichtemission, und zwar insbesondere im nahinfraroten Bereich. „Während des Wachstums der GaAs-Kristalle werden auch Germanium-Atome in das Kristallgitter eingebaut“, erklärt Schmitt. Dieser Einbau von Germanium führt zu zusätzlichen Energieniveaus für Ladungsträger, die beim Zurückfallen auf ihre ursprünglichen Niveaus Licht abgeben. Dieses Licht wird in optischen Resonanzen des hochsymmetrischen Nanokristalls verstärkt, und die Frequenz dieser Resonanzen lässt sich über Größe und Geometrie der Kristalle gezielt steuern. Im Experiment konnte eine Vielzahl dieser optischen Resonanzen nachgewiesen werden, die auch gut mit den numerischen Berechnungen übereinstimmen.

Neuartige Sensoren, LED oder Solarzellen

„Weil sich die optischen und elektronischen Eigenschaften von Halbleitern durch Nanostrukturierung stark modifizieren lassen, eignen sich solche Materialarchitekturen hervorragend dazu, neuartige Sensoren, Leuchtdioden oder Solarzellen zu entwickeln“, sagt Schmitt.

 

 

Zur Publikation in Advanced Optical Materials (2018):"Germanium template assisted integration of gallium arsenide nanocrystals on silicon: a versatile platform for modern optoelectronic materials"; S. W. Schmitt, G. Sarau, C. Speich,G. H. Döhler, Z. Liu, X. Hao, S. Rechberger, C. Dieker, E. Spiecker, W. Prost, F. J. Tegude, G. Conibeer, M. A. Green and S. H. Christiansen.

Doi: 10.1002/adom.201701329

arö


Das könnte Sie auch interessieren

  • MXene als Energiespeicher: Chemische Bildgebung blickt nun tiefer
    Science Highlight
    17.06.2024
    MXene als Energiespeicher: Chemische Bildgebung blickt nun tiefer
    Eine neue Methode in der Spektromikroskopie verbessert die Untersuchung chemischer Reaktionen auf der Nanoskala, sowohl auf Oberflächen als auch im Inneren von Schichtmaterialien. Die Raster-Röntgenmikroskopie (SXM) an der MAXYMUS-Beamline von BESSY II ermöglicht den hochsensitiven Nachweis von chemischen Gruppen, die an der obersten Schicht (Oberfläche) adsorbiert oder in der MXene-Elektrode (Volumen) eingelagert sind. Die Methode wurde von einem HZB-Team unter der Leitung von Dr. Tristan Petit entwickelt. Das Team demonstrierte die Methode nun an MXene-Flocken, einem Material, das als Elektrode in Lithium-Ionen-Batterien eingesetzt wird.
  • Gefriergussverfahren – Eine Anleitung für komplex strukturierte Materialien
    Science Highlight
    25.04.2024
    Gefriergussverfahren – Eine Anleitung für komplex strukturierte Materialien
    Gefriergussverfahren sind ein kostengünstiger Weg, um hochporöse Materialien mit hierarchischer Architektur, gerichteter Porosität und multifunktionalen inneren Oberflächen herzustellen. Gefriergegossene Materialien eignen sich für viele Anwendungen, von der Medizin bis zur Umwelt- und Energietechnik. Ein Beitrag im Fachjournal „Nature Reviews Methods Primer“ vermittelt nun eine Anleitung zu Gefriergussverfahren, zeigt einen Überblick, was gefriergegossene Werkstoffe heute leisten, und skizziert neue Einsatzbereiche. Ein besonderer Fokus liegt auf der Analyse dieser Materialien mit Tomoskopie.

  • IRIS-Beamline an BESSY II mit Nanomikroskopie erweitert
    Science Highlight
    25.04.2024
    IRIS-Beamline an BESSY II mit Nanomikroskopie erweitert
    Die Infrarot-Beamline IRIS am Speicherring BESSY II bietet nun eine vierte Option, um Materialien, Zellen und sogar Moleküle auf verschiedenen Längenskalen zu charakterisieren. Das Team hat die IRIS-Beamline mit einer Endstation für Nanospektroskopie und Nanoimaging erweitert, die räumliche Auflösungen bis unter 30 Nanometer ermöglicht. Das Instrument steht auch externen Nutzergruppen zur Verfügung.