HZB scientist got the dissertation prize at the spring conference of the Deutsche Physikalische Gesellschaft
Dr. Nele Thielemann-Kühn was awarded the Innomag Dissertation Award 2018. © Privat
Dr. Nele Thielemann-Kühn was awarded the dissertation prize of the magnetism research group at the spring conference of the Deutsche Physikalische Gesellschaft (German physical society/DPG) in Berlin. The prize is awarded for outstanding research in the field of magnetism.
Dr. Nele Thielemann-Kühn studied ultrafast magnetic dynamics in ferro- and antiferromagnetic dysprosium during her PhD work at the HZB and the University of Potsdam. Her dissertation, mentored at HZB by Dr. Christian Schüßler-Langeheine, included experiments with ultrashort X-ray pulses at BESSY II. She had already received the 2017 Ernst Eckhard Koch Prize for her dissertation and is now continuing research at Freie Universität Berlin.
Results have been published for example in Physical Review Letters (06 November 2017): Ultrafast and energy-efficient quenching of spin order: Antiferromagnetism beats ferromagnetism; Nele Thielemann-Kühn, Daniel Schick, Niko Pontius, Christoph Trabant, Rolf Mitzner, Karsten Holldack, Hartmut Zabel, Alexander Föhlisch, Christian Schüßler-Langeheine
DOI: 10.1103/PhysRevLett.119.197202
Highlighted as Focus story in "Physics": Quick Changes in Magnetic Materials
Web news to this publication: Future IT: Antiferromagnetic dysprosium reveals magnetic switching with less energy
red.
https://www.helmholtz-berlin.de/pubbin/news_seite?nid=14795;sprache=en
- Copy link
-
BESSY II: Phosphorous chains – a 1D material with 1D electronic properties
For the first time, a team at BESSY II has succeeded in demonstrating the one-dimensional electronic properties of a material through a highly refined experimental process. The samples consisted of short chains of phosphorus atoms that self-organise at specific angles on a silver substrate. Through sophisticated analysis, the team was able to disentangle the contributions of these differently aligned chains. This revealed that the electronic properties of each chain are indeed one-dimensional. Calculations predict an exciting phase transition to be expected as soon as these chains are more closely packed. While material consisting of individual chains with longer distances is semiconducting, a very dense chain structure would be metallic.
-
What vibrating molecules might reveal about cell biology
Infrared vibrational spectroscopy at BESSY II can be used to create high-resolution maps of molecules inside live cells and cell organelles in native aqueous environment, according to a new study by a team from HZB and Humboldt University in Berlin. Nano-IR spectroscopy with s-SNOM at the IRIS beamline is now suitable for examining tiny biological samples in liquid medium in the nanometre range and generating infrared images of molecular vibrations with nanometre resolution. It is even possible to obtain 3D information. To test the method, the team grew fibroblasts on a highly transparent SiC membrane and examined them in vivo. This method will provide new insights into cell biology.
-
Prashanth Menezes awarded prestigious VAIBHAV Fellowship by Government of India
The Ministry of Science and Technology, Government of India, has announced the recipients of the Vaishvik Bhartiya Vaigyanik (VAIBHAV) Fellowship, a flagship initiative aimed at fostering collaboration between the Indian STEMM (Science, Technology, Engineering, Mathematics, and Medicine) diaspora and leading research institutions in India. Among the 2025 awardees is Dr. Prashanth W. Menezes, Head of the Department of Materials Chemistry for Catalysis at Helmholtz-Zentrum Berlin (HZB).