Helmholtz Virtual Institute MiCo: Article selected as journal highlight for 2017

First author is the mathematician Sibylle Bergmann, whose PhD work is funded by MiCo.

First author is the mathematician Sibylle Bergmann, whose PhD work is funded by MiCo. © WIAS

The Helmholtz Virtual Institute MiCo offers a platform through which the Helmholtz-Zentrum Berlin conducts joint research with universities and other partners on the topic of microstructures for thin-film solar cells. The journal Modelling and Simulation in Materials Science and Engineering recently selected an article produced through MiCo as the highlight of those published by the journal during 2017.

The paper deals with the modelling of liquid/solid interface kinetics in silicon, the most common material used for solar cells. First author is mathematician Sibylle Bergmann, a researcher at the Weierstrass Institute who is funded by the Helmholtz Virtual Institute MiCo (Microstructure Control for thin-film solar cells).

The scientific article was evaluated by the reviewers as outstanding and was retrieved over 900 times, a particularly high number for a technical article from this subject area. The publication is available through Open Access.

 

Published in Modelling and Simulation in Materials Science and Engineering:  „Anisotropic Solid–Liquid Interface Kinetics in Silicon: An Atomistically Informed Phase-Field Model“; S. Bergmann, K. Albe, E. Flegel, D. A. Barragan-Yani & B. Wagner

DOI: 10.1088/1361-651X/aa7862

More information on Helmholtz Virtuelle Institut "Microstructure Control for thin-film solar cells"

arö


You might also be interested in

  • A new way to control the magnetic properties of rare earth elements
    Science Highlight
    17.07.2024
    A new way to control the magnetic properties of rare earth elements
    The special properties of rare earth magnetic materials are due to the electrons in the 4f shell. Until now, the magnetic properties of 4f electrons were considered almost impossible to control. Now, a team from HZB, Freie Universität Berlin and other institutions has shown for the first time that laser pulses can influence 4f electrons- and thus change their magnetic properties. The discovery, which was made through experiments at EuXFEL and FLASH, opens up a new way to data storage with rare earth elements.
  • BESSY II shows how solid-state batteries degrade
    Science Highlight
    09.07.2024
    BESSY II shows how solid-state batteries degrade
    Solid-state batteries have several advantages: they can store more energy and are safer than batteries with liquid electrolytes. However, they do not last as long and their capacity decreases with each charge cycle. But it doesn't have to stay that way: Researchers are already on the trail of the causes. In the journal ACS Energy Letters, a team from HZB and Justus-Liebig-Universität, Giessen, presents a new method for precisely monitoring electrochemical reactions during the operation of a solid-state battery using photoelectron spectroscopy at BESSY II. The results help to improve battery materials and design.
  • HySPRINT Photovoltaics Lab inaugurated
    News
    20.06.2024
    HySPRINT Photovoltaics Lab inaugurated
    After around four years of renovation, photovoltaics research groups moved into their offices in Kekuléstraße on 20 June 2024. With the reopening, the building has also been given a new name that makes the research more visible: it is now called HySPRINT Photovoltaics Lab.