HZB experts present cooperation opportunities at Intersolar Europe in Munich

Tandem solar cells combining silicon and perovskite layers could convert up to 30 percent energy into electricity.

Tandem solar cells combining silicon and perovskite layers could convert up to 30 percent energy into electricity.

How do environmental influences influence the performance of solar modules? The Competence Center for Photovoltaics (PVcomB) is investigating this question at the outdoor test stand.

How do environmental influences influence the performance of solar modules? The Competence Center for Photovoltaics (PVcomB) is investigating this question at the outdoor test stand.

The international exhibition “Intersolar” brings photovoltaic research and the solar industry together. It is a perfect opportunity for researchers from Helmholtz-Zentrum Berlin to present thin-film photovoltaic technologies and projects, including for example perovskite solar cells and tandem solar cells.

Intersolar Europe(22 to 22 June) is one of the most important international events for the solar industry, where manufacturers, suppliers, distributors and service providers come to learn of new developments in the solar industry. A team from Helmholtz-Zentrum Berlin (HZB) will be there, in Hall A2, Booth 572, to show which topics HZB is researching in the field of renewable energies. Important points of contact for industry are the Helmholtz Innovation Lab HySPRINT and the Competence Centre Thin-Film and Nanotechnology for Photovoltaics Berlin (PVcomB). These two institutes promote technology transfer and will be there to answer questions at the exhibition.

In the Helmholtz Innovation Lab HySPRINT, silicon-based materials are being combined with organometallic perovskite crystals to develop so-called hybrid tandem cells. Such cells can be used for solar generation of electricity or hydrogen.

The Competence Centre Thin-Film- and Nanotechnology for Photovoltaics Berlin (PVcomB) has industrial reference lines for manufacturing CIGS and silicon photovoltaics. Teams of HZB experts are collaborating with industry to develop novel thin-film technologies and products. Joint research projects with industrial partners have already culminated in many successful innovations.

Research into new material systems for photovoltaics is an important focal topic at HZB. The Centre is specialised in so-called energy materials that convert or store energy. This includes solar cells, material systems for generating hydrogen from sunlight, and magnetic material systems for developing energy-efficient information technologies. For studying interfaces and surfaces of thin films, HZB operates the photon source BESSY II and a series of CoreLabs with latest generation equipment.

HZB’s info stand is in Hall A2, Booth 572 (A2.572). The exhibition will take place from 20 to 22 June 2018 in Munich

 

More information

- on HySPRINT

- on PVcomB

- on INTERSOLAR EUROPE

(sz)

  • Copy link

You might also be interested in

  • The twisted nanotubes that tell a story
    News
    09.12.2025
    The twisted nanotubes that tell a story
    In collaboration with scientists in Germany, EPFL researchers have demonstrated that the spiral geometry of tiny, twisted magnetic tubes can be leveraged to transmit data based on quasiparticles called magnons, rather than electrons.
  • Bright prospects for tin perovskite solar cells
    Science Highlight
    03.12.2025
    Bright prospects for tin perovskite solar cells
    Perovskite solar cells are widely regarded as the next generation photovoltaic technology. However, they are not yet stable enough in the long term for widespread commercial use. One reason for this is migrating ions, which cause degradation of the semiconducting material over time. A team from HZB and the University of Potsdam has now investigated the ion density in four different, widely used perovskite compounds and discovered significant differences. Tin perovskite semiconductors produced with an alternative solvent had a particular low ion density — only one tenth that of lead perovskite semiconductors. This suggests that tin-based perovskites could be used to make solar cells that are not only really environmentally friendly but also very stable.

  • Synchrotron radiation sources: toolboxes for quantum technologies
    Science Highlight
    01.12.2025
    Synchrotron radiation sources: toolboxes for quantum technologies
    Synchrotron radiation sources generate highly brilliant light pulses, ranging from infrared to hard X-rays, which can be used to gain deep insights into complex materials. An international team has now published an overview on synchrotron methods for the further development of quantum materials and technologies in the journal Advanced Functional Materials: Using concrete examples, they show how these unique tools can help to unlock the potential of quantum technologies such as quantum computing, overcome production barriers and pave the way for future breakthroughs.