Silicon heterojunction solar cell with a certified 23.1 % energy conversion efficiency

After further optimization of the baseline process for industrial silicon heterojunction (SHJ) solar cells, the accredited metrology lab ISFH CalTeC now certified an efficiency of 23.1 % for a 4 cm² solar cell. This performance is among the best in the world and demonstrates the leading role of HZB in this technology in Germany and Europe.

Within the institute PVcomB at HZB we develop SHJ cells with the focus on improving industrial applicable materials and processes in collaboration with industry partners (e.g. Meyer Burger, Von Ardenne, Singulus). Moreover, new types of solar cells with the potential to surpass the efficiency limit of silicon-based cells, such as perovskite/SHJ tandem junctions, are developed at HZB, partially in collaboration with industry (Oxford PV). Results will be presented this year at the international PV conferences WCPEC (June 10-15, Hawaii) and EUPVSEC (Sep 24-28, Brussels).

Background

Silicon heterojunction (SHJ) solar cells are made of crystalline silicon wafers using passivated contacts for both polarities based on i/n and i/p stacks of thin-film silicon alloys, such as amorphous silicon, nano-crystalline silicon or silicon oxide. Due to a high silicon wafer quality and the excellent surface passivation SHJ solar cells reach very high conversion efficiencies with highest open circuit voltages >740 mV and low temperature coefficient <0.3 %/K. With this type of two-side contacted cell Kaneka Corp. (Japan) holds the world record with a 25.1 % conversion efficiency. Recently, they attracted attention with 26.7 % for an all-rear-side contacted (IBC) SHJ cell, which is currently the world record for a silicon-based solar cell. For commercial production, the lean process sequence consisting of only four major process steps, all below <200°C processing temperature, facilitate cost-effective cell production.

(bs)

  • Copy link

You might also be interested in

  • New instrument at BESSY II: The OÆSE endstation in EMIL
    Science Highlight
    23.04.2025
    New instrument at BESSY II: The OÆSE endstation in EMIL
    A new instrument is now available at BESSY II for investigating catalyst materials, battery electrodes and other energy devices under operating conditions: the Operando Absorption and Emission Spectroscopy on EMIL (OÆSE) endstation in the Energy Materials In-situ Laboratory Berlin (EMIL). A team led by Raul Garcia-Diez and Marcus Bär showcases the instrument’s capabilities via a proof-of-concept study on electrodeposited copper.
  • An elegant method for the detection of single spins using photovoltage
    Science Highlight
    14.04.2025
    An elegant method for the detection of single spins using photovoltage
    Diamonds with certain optically active defects can be used as highly sensitive sensors or qubits for quantum computers, where the quantum information is stored in the electron spin state of these colour centres. However, the spin states have to be read out optically, which is often experimentally complex. Now, a team at HZB has developed an elegant method using a photo voltage to detect the individual and local spin states of these defects. This could lead to a much more compact design of quantum sensors.
  • Solar cells on moon glass for a future base on the moon
    Science Highlight
    07.04.2025
    Solar cells on moon glass for a future base on the moon
    Future settlements on the moon will need energy, which could be supplied by photovoltaics. However, launching material into space is expensive – transporting one kilogram to the moon costs one million euros. But there are also resources on the moon that can be used. A research team led by Dr. Felix Lang of the University of Potsdam and Dr. Stefan Linke of the Technical University of Berlin have now produced the required glass from ‘moon dust’ (regolith) and coated it with perovskite. This could save up to 99 percent of the weight needed to produce PV modules on the moon. The team tested the radiation tolerance of the solar cells at the proton accelerator of the HZB.