Neuer Weltrekord bei der direkten solaren Wasserspaltung

Aufbau der Photokathode: Licht fällt durch die transparente Schutzschicht mit katalytisch aktiven Rhodium-Partikeln in die Tandemzelle. Bild ACS Energy Letters

Aufbau der Photokathode: Licht fällt durch die transparente Schutzschicht mit katalytisch aktiven Rhodium-Partikeln in die Tandemzelle. Bild ACS Energy Letters

In einem nachhaltigen Energiesystem wird Wasserstoff als Speichermedium eine wichtige Rolle spielen. Einem internationalen Forscher-Team ist es jetzt gelungen, den Wirkungsgrad für die direkte solare Wasserspaltung zur Wasserstoffgewinnung auf 19 Prozent zu steigern. Sie kombinierten dafür eine Tandem-Solarzelle aus III-V-Halbleitern mit Rhodium-Nanopartikeln und kristallinem Titandioxid. An der Forschungsarbeit waren Teams aus dem California Institute of Technology, der University of Cambridge, der TU Ilmenau und dem Fraunhofer Institut für Solare Energiesysteme ISE beteiligt. Ein Teil der Experimente fand am Institut für Solare Brennstoffe am Helmholtz-Zentrum Berlin statt.

Sonnenlicht steht weltweit reichlich zur Verfügung – allerdings nicht rund um die Uhr. Ein Lösungsansatz besteht darin, Sonnenlicht in Form von chemischer Energie zu speichern, konkret: mit Sonnenlicht Wasserstoff zu produzieren. Denn Wasserstoff lässt sich gut speichern und vielseitig nutzen, ob in einer Brennstoffzelle zum Erzeugen von Strom und Wärme oder als Ausgangsbasis für Brennstoffe. Kombiniert man Solarzellen mit Katalysatoren und weiteren funktionalen Schichten zu einer „monolithischen Photoelektrode“ aus einem Block, wird die Aufspaltung von Wasser besonders einfach: dabei befindet sich die Photokathode im wässrigen Medium und wenn Licht auf sie fällt, bildet sich auf der Vorderseite Wasserstoff, auf der Rückseite Sauerstoff.

Lichtdurchlässiger Korrosionsschutz

Für die hier untersuchte monolithische Photokathode haben die Forscher eine am Fraunhofer ISE entwickelte hocheffiziente Tandem-Zelle aus III-V-Halbleitern mit weiteren funktionalen Schichten kombiniert. Dabei gelang es ihnen, die Verluste durch Lichtreflexion und Absorption an der Oberfläche deutlich zu verringern. „Darin besteht auch die Innovation“, erläutert Prof. Hans-Joachim Lewerenz, Caltech, USA: „Denn bereits 2015 konnten wir in einer früheren Zelle einen Wirkungsgrad von über 14 Prozent erreichen, damals ein Weltrekord. Hier haben wir die Antikorrosionsschicht durch eine kristalline Titandioxid-Schicht ersetzt, die nicht nur hervorragende Antireflexionseigenschaften besitzt, sondern an der auch die Katalysator-Teilchen haften bleiben“. Und Prof. Harry Atwater,  Caltech, fügt an: „Außerdem haben wir ein neues elektrochemisches Verfahren genutzt, um die Rhodium-Nanoteilchen herzustellen, die als Katalysatoren für die Wasserspaltung dienen. Sie messen nur 10 Nanometer im Durchmesser und sind damit optisch nahezu transparent, also ideal geeignet für ihre Aufgabe.“

Wirkungsgrad 19,3 Prozent

Unter simulierter Sonneneinstrahlung erzielten die Wissenschaftler einen Wirkungsgrad von 19,3 Prozent (in verdünnterwässriger Perchlorsäure), in (neutralem) Wasser immerhin noch 18,5 Prozent. Dies reicht schon nah an den theoretisch maximalen Wirkungsgrad von 23 Prozent heran, der sich mit dieser Kombination von Schichten aufgrund ihrer elektronischen Eigenschaften erreichen lässt.

Verbesserungen bei der Stabilität

„Die kristalline Titandioxid-Schicht schützt die eigentliche Solarzelle nicht nur vor Korrosion, sondern verbessert durch ihre günstigen elektronischen Eigenschaften auch den Ladungstransport“, sagt Dr. Matthias May, der einen Teil der Experimente zur Effizienzbestimmung am HZB-Institut für Solare Brennstoffe durchgeführt hat, im Vorläuferlabor der Solar Fuel Testing Facility der Helmholtz Energy Materials Foundry (HEMF). Der nun publizierte Rekordwert basiert auf Arbeiten, die May bereits als Doktorand am HZB begonnen hatte und für die er 2016 den Helmholtz-Doktoranden-Preis im Forschungsbereich Energie erhielt. „Die Stabilität konnten wir auf knapp 100 Stunden steigern; das ist ein großer Fortschritt im Vergleich zu Vorgängersystemen, die bereits nach 40 Stunden korrodiert waren. Dennoch bleibt hier noch viel zu tun“, erklärt May.

Ausblick: Tandemzellen mit Silizium

Denn noch ist dies Grundlagenforschung an kleinen, hochpreisigen Systemen im Labor. Aber die Forscher sind optimistisch: „Diese Arbeit zeigt, dass maßgeschneiderte Tandem-Zellen für die direkte solare Wasserspaltung das Potential haben, Wirkungsgrade jenseits von 20 Prozent zu erreichen. Ein Ansatz dafür ist die noch bessere Wahl der Bandlückenenergien der beiden Absorbermaterialien in der Tandem-Zelle. Und eines der beiden könnte dabei sogar Silizium sein“, erklärt Prof. Thomas Hannappel, TU Ilmenau. Teams am Fraunhofer ISE und der TU Ilmenau arbeiten daran, Zellen zu entwerfen, in denen III-V-Halbleiter mit dem preisgünstigem Silizium kombiniert werden, was die Kosten erheblich senken könnte.

Zur Publikation in ACS Energy Letters: "Monolithic Photoelectrochemical Device for Direct Water Splitting with 19% Efficiency” Wen-Hui Cheng, Matthias H. Richter, Matthias M. May, Jens Ohlmann , David Lackner , Frank Dimroth, Thomas Hannappel , Harry A. Atwater , Hans-Joachim Lewerenz

Doi:10.1021/acsenergylett.8b00920

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Grüne Herstellung von Hybridmaterialien als hochempfindliche Röntgendetektoren
    Science Highlight
    08.05.2025
    Grüne Herstellung von Hybridmaterialien als hochempfindliche Röntgendetektoren
    Neue organisch-anorganische Hybridmaterialien auf Basis von Wismut sind hervorragend als Röntgendetektoren geeignet, sie sind deutlich empfindlicher als handelsübliche Röntgendetektoren und langzeitstabil. Darüber hinaus können sie ohne Lösungsmittel durch Kugelmahlen hergestellt werden, einem umweltfreundlichen Syntheseverfahren, das auch in der Industrie genutzt wird. Empfindlichere Detektoren würden die Strahlenbelastung bei Röntgenuntersuchungen erheblich reduzieren.

  • Energiespeicher: BAM, HZB und HU Berlin planen gemeinsames Berlin Battery Lab
    Nachricht
    07.05.2025
    Energiespeicher: BAM, HZB und HU Berlin planen gemeinsames Berlin Battery Lab
    Die Bundesanstalt für Materialforschung und -prüfung (BAM), das Helmholtz-Zentrum Berlin (HZB) und die Humboldt-Universität zu Berlin (HU Berlin) haben ein Memorandum of Understanding (MoU) zur Gründung des Berlin Battery Lab unterzeichnet. Das Labor wird die Expertise der drei Institutionen bündeln, um die Entwicklung nachhaltiger Batterietechnologien voranzutreiben. Die gemeinsame Forschungsinfrastruktur soll auch der Industrie für wegweisende Projekte in diesem Bereich offenstehen.
  • BESSY II: Einblick in ultraschnelle Spinprozesse mit Femtoslicing
    Science Highlight
    05.05.2025
    BESSY II: Einblick in ultraschnelle Spinprozesse mit Femtoslicing
    Einem internationalen Team ist es an BESSY II erstmals gelungen, einen besonders schnellen Prozess im Inneren eines magnetischen Schichtsystems, eines Spinventils, aufzuklären: An der Femtoslicing-Beamline von BESSY II konnten sie die ultraschnelle Entmagnetisierung durch spinpolarisierte Stromimpulse beobachten. Die Ergebnisse helfen bei der Entwicklung von spintronischen Bauelementen für die schnellere und energieeffizientere Verarbeitung und Speicherung von Information. An der Zusammenarbeit waren Teams der Universität Straßburg, des HZB, der Universität Uppsala sowie weiterer Universitäten beteiligt.