GRECO kick-off in Madrid: advancing photovoltaics through “open science”

Participants from partner institutions at the GRECO kick off in Madrid on 25. June 2018.

Participants from partner institutions at the GRECO kick off in Madrid on 25. June 2018.

The Helmholtz-Zentrum Berlin (HZB) is one of ten international partners in the GRECO pilot project funded under the European Union framework programme Horizon 2020. They intend to jointly test OpenScience approaches for exchanging knowledge and research data in order to accelerate the development of innovative PV products worldwide. GRECO will receive three million euros in funding through 2021.

The kick-off meeting took place in Madrid end of June 2018. The Institute for Solar Energy at the Universidad Politécnica de Madrid (UPM) is coordinating the research project that will see industry organisations, companies, government, academia and scientific organisations working together.

HZB contributions: materials data base and videotutorials

Dr. Eva Unger and her Helmholtz Young Investigator Group at the HZB are participants in GRECO: “We are contributing our expertise in the field of perovskite absorber layers for tandem photovoltaics and intend to establish a materials database in which key parameters and data from various absorbers can be brought together and made available in an open manner”, explains the chemist. She is also planning a video tutorial on the measurement and characterisation of solar cells. “Characteristic current-voltage curves are often not informative enough for determining the efficiency of perovskite solar cells”, explains the PV expert. The video is intended to contribute to establishing uniform quality standards for measuring solar cells worldwide.

Transparency and innovative products

Through use of Open Science Tools such as Open Access, Open Data, Open Education, Open Notebooks, Open Software, and Open Peer Review, GRECO wants to create complete transparency and exchange in the conduct of research. “This will enable new scientific concepts to be quickly applied by third parties, accelerating progress”, commented coordinators Dr. Ana B. Cristóbal and Prof. Carlos del Cañizo of the Universidad Politécnica de Madrid.

Innovative products to be developed by GRECO include repair and recycling methods for solar modules, precise modelling of power yields over timescales of decades (ageing), solar-powered irrigation systems, innovative solar modules as well as PV heat pump systems for use in various areas of everyday life.

 

Scientific Partners: Universidad Politécnica de Madrid, Pompeu Fabra University, Universidad de Évora, Central Solar Energy Laboratory of the Bulgarian Academy of Sciences, Helmholtz-Zentrum Berlin, Reiner Lemoine Institute, and Universidade de São Paulo

Industrial partners: Insolight SA (Switzerland) and the Euro-Mediterrean Irrigators Association (Spain)

In addition, the project is receiving support from the region of Andalusia, Spain.

GRECO stands for Fostering a Next GeneRation of European Photovoltaic SoCiety through Open Science

arö

  • Copy link

You might also be interested in

  • Bright prospects for tin perovskite solar cells
    Science Highlight
    03.12.2025
    Bright prospects for tin perovskite solar cells
    Perovskite solar cells are widely regarded as the next generation photovoltaic technology. However, they are not yet stable enough in the long term for widespread commercial use. One reason for this is migrating ions, which cause degradation of the semiconducting material over time. A team from HZB and the University of Potsdam has now investigated the ion density in four different, widely used perovskite compounds and discovered significant differences. Tin perovskite semiconductors produced with an alternative solvent had a particular low ion density — only one tenth that of lead perovskite semiconductors. This suggests that tin-based perovskites could be used to make solar cells that are not only really environmentally friendly but also very stable.

  • Synchrotron radiation sources: toolboxes for quantum technologies
    Science Highlight
    01.12.2025
    Synchrotron radiation sources: toolboxes for quantum technologies
    Synchrotron radiation sources generate highly brilliant light pulses, ranging from infrared to hard X-rays, which can be used to gain deep insights into complex materials. An international team has now published an overview on synchrotron methods for the further development of quantum materials and technologies in the journal Advanced Functional Materials: Using concrete examples, they show how these unique tools can help to unlock the potential of quantum technologies such as quantum computing, overcome production barriers and pave the way for future breakthroughs.
  • Joint Kyiv Energy and Climate Lab goes live
    News
    28.11.2025
    Joint Kyiv Energy and Climate Lab goes live
    Helmholtz-Zentrum Berlin and the National University of Kyiv-Mohyla Academy established on 27 November a Joint Energy and Climate Lab.