GRECO kick-off in Madrid: advancing photovoltaics through “open science”

Participants from partner institutions at the GRECO kick off in Madrid on 25. June 2018.

Participants from partner institutions at the GRECO kick off in Madrid on 25. June 2018.

The Helmholtz-Zentrum Berlin (HZB) is one of ten international partners in the GRECO pilot project funded under the European Union framework programme Horizon 2020. They intend to jointly test OpenScience approaches for exchanging knowledge and research data in order to accelerate the development of innovative PV products worldwide. GRECO will receive three million euros in funding through 2021.

The kick-off meeting took place in Madrid end of June 2018. The Institute for Solar Energy at the Universidad Politécnica de Madrid (UPM) is coordinating the research project that will see industry organisations, companies, government, academia and scientific organisations working together.

HZB contributions: materials data base and videotutorials

Dr. Eva Unger and her Helmholtz Young Investigator Group at the HZB are participants in GRECO: “We are contributing our expertise in the field of perovskite absorber layers for tandem photovoltaics and intend to establish a materials database in which key parameters and data from various absorbers can be brought together and made available in an open manner”, explains the chemist. She is also planning a video tutorial on the measurement and characterisation of solar cells. “Characteristic current-voltage curves are often not informative enough for determining the efficiency of perovskite solar cells”, explains the PV expert. The video is intended to contribute to establishing uniform quality standards for measuring solar cells worldwide.

Transparency and innovative products

Through use of Open Science Tools such as Open Access, Open Data, Open Education, Open Notebooks, Open Software, and Open Peer Review, GRECO wants to create complete transparency and exchange in the conduct of research. “This will enable new scientific concepts to be quickly applied by third parties, accelerating progress”, commented coordinators Dr. Ana B. Cristóbal and Prof. Carlos del Cañizo of the Universidad Politécnica de Madrid.

Innovative products to be developed by GRECO include repair and recycling methods for solar modules, precise modelling of power yields over timescales of decades (ageing), solar-powered irrigation systems, innovative solar modules as well as PV heat pump systems for use in various areas of everyday life.

 

Scientific Partners: Universidad Politécnica de Madrid, Pompeu Fabra University, Universidad de Évora, Central Solar Energy Laboratory of the Bulgarian Academy of Sciences, Helmholtz-Zentrum Berlin, Reiner Lemoine Institute, and Universidade de São Paulo

Industrial partners: Insolight SA (Switzerland) and the Euro-Mediterrean Irrigators Association (Spain)

In addition, the project is receiving support from the region of Andalusia, Spain.

GRECO stands for Fostering a Next GeneRation of European Photovoltaic SoCiety through Open Science

arö

  • Copy link

You might also be interested in

  • Sasol and HZB deepen collaboration with strategic focus on digitalisation
    News
    08.10.2025
    Sasol and HZB deepen collaboration with strategic focus on digitalisation
    Sasol Research & Technology and Helmholtz Zentrum Berlin (HZB) are expanding their partnership into the realm of digitalisation, building on their joint efforts in the CARE-O-SENE project and an Industrial Fellowship launched earlier this year. This new initiative marks a significant step forward in leveraging digital technologies to accelerate catalyst innovation and deepen scientific collaboration.
  • Technology Transfer Prize Ceremony 2025
    News
    07.10.2025
    Technology Transfer Prize Ceremony 2025
    This year’s Technology Transfer Prize Ceremony will take place on October 13 at 2 pm in the Lecture Hall, BESSY II Building, Adlershof.
  • Novel technique shines light on next-gen nanomaterials: how MXenes truly work
    Science Highlight
    01.10.2025
    Novel technique shines light on next-gen nanomaterials: how MXenes truly work
    Researchers have for the first time measured the true properties of individual MXene flakes — an exciting new nanomaterial with potential for better batteries, flexible electronics, and clean energy devices. By using a novel light-based technique called spectroscopic micro-ellipsometry, they discovered how MXenes behave at the single-flake level, revealing changes in conductivity and optical response that were previously hidden when studying only stacked layers. This breakthrough provides the fundamental knowledge and tools needed to design smarter, more efficient technologies powered by MXenes.