Weltrekord: Schnellste 3D-Tomographien an BESSY II

Grau sind die Alu-Granulate dargestellt, bunt die Poren. Wie sich diese Poren mit der Zeit vergrößern, zeigt die Serie von 3D-Tomographien.

Grau sind die Alu-Granulate dargestellt, bunt die Poren. Wie sich diese Poren mit der Zeit vergrößern, zeigt die Serie von 3D-Tomographien. © HZB

Der Aufbau besteht aus einem Rotationstisch, einer Heizlampe (bis  800 °C), optischen Elementen sowie der CMOS-Kamera. Eingezeichnet sind einfallende (rot) und durchgelassene (grün) Röntgenstrahlen sowie der Lichtweg vom Szintillator zur Kamera (blau).

Der Aufbau besteht aus einem Rotationstisch, einer Heizlampe (bis 800 °C), optischen Elementen sowie der CMOS-Kamera. Eingezeichnet sind einfallende (rot) und durchgelassene (grün) Röntgenstrahlen sowie der Lichtweg vom Szintillator zur Kamera (blau). © HZB

Ein HZB-Team hat an der EDDI-Beamline an BESSY II einen raffinierten Präzisions-Drehtisch entwickelt und mit einer besonderen, schnellen Optik kombiniert. Damit konnten sie die Porenbildung in Metall-Körnern während des Aufschäumens mit 25 Tomographien pro Sekunde dokumentieren – ein Weltrekord.

Die Qualität vieler Werkstoffe hängt vom Herstellungsprozess ab. So spielt beim Gießen oder Schweißen eine Rolle, wie rasch die Schmelze erstarrt. Auch bei metallischen Schäumen kommt es darauf an, wie das Aufschäumen abläuft. Um diese Prozesse zu beobachten, sind besonders schnelle Untersuchungen nötig. Die bisher schnellsten 3D-Tomographien sind nun an der Röntgenquelle BESSY II gelungen, die das Helmholtz-Zentrum Berlin betreibt.

Das Team um Dr. Francisco Garcia-Moreno hat einen Drehtisch konstruiert, der sich ultrastabil mit konstanter Rotationsgeschwindigkeit um seine Achse dreht. Dabei kommt es wirklich auf höchste Präzision an: Jedes Taumeln um die Drehachse oder selbst minimale Abweichungen bei der Drehgeschwindigkeit würden die zuverlässige Berechnung der 3D-Tomographie verhindern. Während kommerziell erhältliche Lösungen einige hunderttausend Euro kosten und bis zu 20 Tomographien pro Sekunde ermöglichen, konnten die Berliner Physiker eine deutlich günstigere Lösung entwickeln, die noch dazu schneller ist. „Meine beiden Doktoranden an der Technischen Universität Berlin haben die Probenhalter selbst an der Drehmaschine angefertigt“, sagt Garcia-Moreno, der knifflige technische Lösungen nicht nur gern austüftelt, sondern auch selbst handwerkliches Geschick besitzt. Weitere Teile wurden in der HZB-Werkstatt produziert. Außerdem hatten Garcia-Moreno und seine Kollegin Dr. Catalina Jimenez schon im Vorfeld dieser Arbeit eine Spezial-Optik für die schnelle CMOS-Kamera entwickelt, die sogar simultane Diffraktion erlaubt. Damit sind nun ca. 2000 Projektionen pro Sekunde möglich, aus denen insgesamt 25 dreidimensionale Tomographien erstellt werden können.

Als erstes Beispiel untersuchte das Team Körnchen aus Aluminiumlegierungen, die beim Erhitzen zu einem Metallschaum werden. Dafür montierten sie eine leistungsstarke Infrarotlampe über dem Metallgranulat und erhitzten die Probe auf etwa 650 Grad Celsius. Alle 40 Millisekunden entstand eine komplette 3D-Tomographie mit einer Ortsauflösung von 2,5 Mikrometern (Pixelgröße). Die insgesamt knapp 400 Tomographien ermöglichen es nun den Prozess mit hoher Zeitauflösung zu analysieren.

„Wir wollen besser verstehen und quantitativ analysieren, wie sich Poren in den Körnern bilden, ob sie auch Oberflächen erreichen und inwieweit dieser Prozess in verschiedenen Körnern unterschiedlich abläuft“ erklärt Garcia-Moreno. Dies ist eine praxisrelevante Frage, die auch die Industrie interessiert. Denn Granulate aus Metallverbindungen könnten beim Aufschäumen komplizierte Formen besser ausfüllen als Schäume, die aus einem Metallblock entstehen. Doch das Formteil wird nur dann belastbar sein, wenn sich beim Aufschäumen auch die Körner miteinander eng verbinden. Mit der an BESSY II entwickelten ultraschnellen 3D-Tomographie lässt sich dies genauso wie andere dynamische Prozesse nun sehr genau und zeitaufgelöst beobachten.

Da für das Upgrade von BESSY II zu BESSY VSR die EDDI-Beamline abgebaut werden muss, hat Garcia-Moreno Kontakt zu anderen Röntgenquellen aufgenommen und plant, diese Methode dort aufzubauen.

 

Zur Publikation im Journal of Synchrotron Radiation (2018): Time-resolved in-situ tomography for the analysis of evolving metal foam granulates; Francisco García-Moreno, Paul H. Kamm, Tillmann R. Neu & John Banhart

DOI: 10.1107/S1600577518008949

 

 

 

 

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Ernst-Eckhard-Koch-Preis und Innovationspreis Synchrotronstrahlung 2025
    Nachricht
    05.12.2025
    Ernst-Eckhard-Koch-Preis und Innovationspreis Synchrotronstrahlung 2025
    Der Freundeskreis des HZB zeichnete auf dem 27. Nutzertreffen BESSY@HZB die Dissertation von Dr. Enggar Pramanto Wibowo (Friedrich-Alexander-Universität Erlangen-Nürnberg) aus.
    Darüber hinaus wurde der Europäische Innovationspreis Synchrotronstrahlung 2025 an Prof. Tim Salditt (Georg-August-Universität Göttingen) sowie an die Professoren Danny D. Jonigk und Maximilian Ackermann (beide, Universitätsklinikum der RWTH Aachen) verliehen. 
  • Gute Aussichten für Zinn-Perowskit-Solarzellen
    Science Highlight
    03.12.2025
    Gute Aussichten für Zinn-Perowskit-Solarzellen
    Perowskit-Solarzellen gelten weithin als die Photovoltaik-Technologie der nächsten Generation. Allerdings sind Perowskit-Halbleiter langfristig noch nicht stabil genug für den breiten kommerziellen Einsatz. Ein Grund dafür sind wandernde Ionen, die mit der Zeit dazu führen, dass das Halbleitermaterial degradiert. Ein Team des HZB und der Universität Potsdam hat nun die Ionendichte in vier verschiedenen Perowskit-Halbleitern untersucht und dabei erhebliche Unterschiede festgestellt. Eine besonders geringe Ionendichte wiesen Zinn-Perowskit-Halbleiter auf, die mit einem alternativen Lösungsmittel hergestellt wurden – hier betrug die Ionendichte nur ein Zehntel im Vergleich zu Blei-Perowskit-Halbleitern. Damit könnten Perowskite auf Zinnbasis ein besonders großes Potenzial zur Herstellung von umweltfreundlichen und besonders stabilen Solarzellen besitzen.
  • Synchrotron-strahlungsquellen: Werkzeugkästen für Quantentechnologien
    Science Highlight
    01.12.2025
    Synchrotron-strahlungsquellen: Werkzeugkästen für Quantentechnologien
    Synchrotronstrahlungsquellen erzeugen hochbrillante Lichtpulse, von Infrarot bis zu harter Röntgenstrahlung, mit denen sich tiefe Einblicke in komplexe Materialien gewinnen lassen. Ein internationales Team hat nun im Fachjournal Advanced Functional Materials einen Überblick über Synchrotronmethoden für die Weiterentwicklung von Quantentechnologien veröffentlicht: Anhand konkreter Beispiele zeigen sie, wie diese einzigartigen Werkzeuge dazu beitragen können, das Potenzial von Quantentechnologien wie z. B. Quantencomputing zu erschließen, Produktionsbarrieren zu überwinden und den Weg für zukünftige Durchbrüche zu ebnen.