Themen: Kooperationen (127) BESSY II (257) HZB-Eigenforschung (85)

Science Highlight    31.07.2018

Elektronische Prozesse während der Katalyse mit neuartigem Röntgen-Spektroskopie-Verfahren beobachtet

Auch bei der Photosynthese spielen Mangan-Verbindungen als Katalysatoren eine Rolle.
Copyright: HZB

Einem internationalen Team ist an BESSY II ein Durchbruch gelungen. Erstmals konnten sie elektronische Prozesse an einem Übergangsmetall im Detail  untersuchen und aus den Messdaten zuverlässige Rückschlüsse auf deren katalytische Wirkung  ziehen. Ihre Ergebnisse sind hilfreich, um gezielt katalytische Systeme, in deren Zentren Übergangmetalle stehen, für zukünftige Anwendungen zu entwickeln. Die Arbeit ist nun in Chemical Science, dem Open Access Journal der Royal Society of Chemistry, veröffentlicht.

Viele wichtige Prozesse in der Natur benötigen Katalysatoren: Atome oder Moleküle, die die gewünschte Reaktion ermöglichen, aber selbst unverändert aus ihr hervorgehen. Ein Beispiel ist die Photosynthese in Pflanzen, die nur mit Hilfe eines Proteinkomplexes möglich ist, in deren Zentrum vier Mangan-Atome sitzen. Oft spielen in solchen Prozessen sogenannte Redoxreaktionen eine entscheidende Rolle, bei denen die Reaktionsteilnehmer Elektronen austauschen und dabei reduziert (Elektronenaufnahme) bzw. oxidiert (Elektronenabgabe) werden. Katalytische Redoxprozesse in der Natur oder in der Technik gelingen oft nur dank passender Katalysatoren, in denen Übergangsmetalle eine wichtige Funktion übernehmen. 

Weiches Röntgenlicht von BESSY II

Solche Übergangsmetalle und insbesondere ihr Redox- oder Oxidationszustand lassen sich besonders gut mit weichem Röntgenlicht untersuchen. Bei der so genannten L-Kanten-Absorptionspektroskopie werden Elektronen aus der 2p-Schale des Übergangsmetalls angeregt, kurzfristig freie d-Orbitale zu besetzen. Aus dem Röntgen-Absorptionsspektrum lässt sich eine Energiedifferenz ermitteln, von der bekannt ist, dass sie den Oxidationszustand des Moleküls oder des Katalysators widerspiegelt. Wo genau im Katalysator während einer Redoxreaktion die Elektronen jedoch aufgenommen oder abgegeben werden, wie genau also sich die Ladungsdichte im Katalysator bei einer Änderung seines Oxidationszustandes verändert, war bisher weitgehend unbekannt. Dies lag vor allem daran, dass zuverlässige Methoden zur theoretischen Beschreibungen der Ladungsdichten in Katalysator-Molekülen fehlten und dass zuverlässige experimentelle Daten nur schwer zu erhalten sind. Befinden sich nämlich die Übergangsmetalle in größeren, organischen Molekülkomplexen, wie sie typisch sind für funktionierende Redox-Katalysatoren, so wird die Untersuchung äußerst schwierig, da die Röntgenstrahlung sofort zu Schäden in der Probe führt.

Probe in Lösung in unterschiedlichen Oxidationszuständen untersucht

Erstmals ist es nun einem internationalen Team vom HZB, der Uppsala University (Schweden), dem Lawrence Berkeley National Laboratory in Berkeley (USA), der Manchester University (Großbritanien) und dem SLAC National Accelerator Laboratory in Stanford (USA) mit Messungen an BESSY II gelungen, Mangan-Atome in unterschiedlichen Verbindungen und Oxidationszuständen in operando – also während verschiedener Oxidationsstufen – zu untersuchen.  Die Forscher um Philippe Wernet brachten dafür die Proben in unterschiedliche Lösungsmittel, untersuchten den Flüssigkeitsstrahl im Röntgenlicht und verglichen die gemessen Daten mit neuartigen Rechnungen aus der Gruppe um  Marcus Lundberg von der Uppsala University. „Es gelang uns zu ermitteln, wie und vor allem warum sich die Röntgen-Absorptionsspektren mit den Oxidationszuständen verschieben“, so der Theoretiker Marcus Lundberg. Die beiden Doktoranden Markus Kubin (HZB) mit seiner experimetnellen und Meiyuan Guo (Uppsala University) mit seiner theoretischen Expertise spiegeln den interdisziplinären Ansatz der Studie wider und trugen zu gleichen Teilen als Erstautoren der Studie bei.

Durchbruch durch Kombination von Theorie und Experiment

„Wir haben einen neuartigen experimentellen Aufbau mit quantenchemischen Modellrechnungen  kombiniert und dadurch, wie wir meinen, einen Durchbruch für das Verständnis von metallorganischen Katalysatoren erreicht“ sagt Wernet: „Erstmals konnten wir Berechnungen zu Oxidation oder Reduktion, die nicht lokal auf dem Metall, sondern auf dem gesamten Molekül stattfinden, auch im Experiment testen und nachvollziehen.“ Diese Erkenntnisse sind ein wichtiger Grundstein für zukünftigen Arbeiten in der Photosynthese: „Sie werden ein neuartiges Verständnis der Redoxprozesse im Mangan-Katalysator des Photosystem II Proteinkomplexes ermöglichen“, sagt Junko Yano, die intensiv an der Photosynthese forscht.

Published in Chemical Science (2018): Probing the oxidation state of transition metal complexes: a case study on how charge and spin densities determine Mn L-edge X-ray absorption energies; Markus Kubin,  Meiyuan Guo,  Thomas Kroll, Heike Löchel,  Erik Källman,  Michael L. Baker,  Rolf Mitzner,  Sheraz Gul,  Jan Kern,  Alexander Föhlisch, Alexei Erko, Uwe Bergmann,  Vittal Yachandra, Junko Yano,  Marcus Lundberg and  Philippe Wernet;

DOI: 10.1039/C8SC00550H

 

arö


           



Das könnte Sie auch interessieren
  • <p>Von links nach rechts: Prof. Dr. Jan L&uuml;ning (HZB, design. GF), Dr. Roland Steitz (HZB), H.E. Dr. Khaled TOUKAN (Chairman of Jordan Atomic Energy Commission), Dr. Antje Vollmer (HZB), Mr Akram Hayjeneh (Jordan Embassy in Berlin), Dr. Samer Kahook (Manager of JRTR Jordan Atomic Energy Commission).</p>NACHRICHT      04.12.2018

    Delegation aus Jordanien zu Besuch am HZB

    Das Helmholtz-Zentrum Berlin wird die Zusammenarbeit mit jordanischen Großforschungseinrichtungen intensivieren. Das vereinbarte Prof. Dr. Jan Lüning mit Vertretern einer hochrangigen jordanischen Forschungsdelegation, die Ende November 2018 zu Gast am HZB war. [...]


  • NACHRICHT      30.11.2018

    Zwei neue Helmholtz-Nachwuchsgruppen am HZB bewilligt

    Das Helmholtz-Zentrum Berlin (HZB) baut ab 2019 zwei neue Helmholtz-Nachwuchsgruppen auf und stärkt damit die Kompetenzen in der Katalyse-Forschung. Die Helmholtz-Gemeinschaft fördert jede Gruppe jährlich mit 150.000 Euro über einen Zeitraum von fünf Jahren; hinzukommen Eigenmittel des HZB in der gleichen Höhe. [...]




Newsletter