Margarita Russina erhält Promotionspreis mit Arbeit über atomare Diffusionsprozesse bei der Glasbildung

Den Hahn-Meitner-Promotionspreis erhält am 1. Dezember 1999 die Physikerin Dr. Margarita Russina. Der Preisträgerin war es in besonderer Weise gelungen, die wissenschaftlichen Inhalte ihrer hervorragenden Promotionsarbeit in anschaulicher und für die Öffentlichkeit verständlicher Form darzustellen.

Der Hahn-Meitner-Promotionspreis ist mit 10.000 Mark dotiert. Er wird alle zwei Jahre von einer Jury verliehen, die sich aus Wissenschaftlern und Journalisten zusammensetzt. Ausgeschrieben wurde der Preis unter den Doktoranden, die am Hahn-Meitner-Institut mit hervorragenden Ergebnissen promoviert hatten. Mit der Preisvergabe will das Hahn-Meitner-Institut junge Nachwuchswissenschaftler motivieren, sich verstärkt um die Vermittlung ihrer Forschungsarbeiten an ein breites Publikum zu bemühen. An dem aktuellen Wettbewerb waren 18 Doktoranden beteiligt.

Die Preisträgerin Margarita Russina studierte an der Staatlichen Universität Moskau Physik. Ihre Promotionsarbeit unter der Betreuung von Prof. Dr. Ferenc Mezei erfolgte in Berlin an der Technischen Universität und am Hahn-Meitner-Institut. In dieser experimentellen Arbeit mit Neutronenstreuung am Forschungsreaktor des Hahn-Meitner-Instituts untersuchte die Wissenschaftlerin die physikalischen Prozesse bei der Entstehung amorpher Strukturen – sogenannter Glasphasen – in erstarrenden Schmelzen.

Margarita Russina fand typische Bewegungsmuster der Atome, die für das Zustandekommen einer Glasphase beim Übergang vom flüssigen zum festen Zustand verantwortlich sind. Diesen Prozess konnte Frau Russina als ein schnelles kollektives Fließen ganzer Gruppen von Atomen bestimmen. Damit hat sie die Natur des sogenannten Beta-Prozess zum ersten Mal aufgeklärt.

Das kollektive kettenartige Fließen in der Nähe des Phasenübergangs ist dabei ein eher selten auftretendes Ordnungsprinzip das nicht, wie es die Regel ist, durch die Diffusionsbewegung von Einzelatomen bestimmt wird. Kenntnisse dieses Phänomens – einem spontanen Auftreten von räumlich inhomogenen Bewegungsarten in einem homogenen Material – sind auch in anderen Bereichen der Physik von aktueller Bedeutung.

Dr. Margarita Russina

  • Link kopieren

Das könnte Sie auch interessieren

  • KI-Einsatz in der Chemie: Studie zeigt Stärken und Schwächen
    Nachricht
    04.06.2025
    KI-Einsatz in der Chemie: Studie zeigt Stärken und Schwächen
    Wie gut ist künstliche Intelligenz im Vergleich zu menschlichen Fachleuten? Ein Forschungsteam des HIPOLE Jena hat diese Frage im Bereich der Chemie untersucht: Mithilfe eines neu entwickelten Prüfverfahrens namens „ChemBench“ verglichen die Forschenden die Leistung moderner Sprachmodelle wie GPT-4 mit der von erfahrenen Chemikerinnen und Chemikern. 

  • Gemeinsames Data & AI Center für Berlin geplant
    Nachricht
    27.05.2025
    Gemeinsames Data & AI Center für Berlin geplant
    Datengestützte Forschung ist entscheidend, um gesellschaftliche Herausforderungen zu bewältigen – sei es in der Gesundheits-, Material- oder Klimaforschung. Mit einem bislang einmaligen Schulterschluss wollen der Exzellenzverbund, das Max Delbrück Center und das Helmholtz-Zentrum Berlin gemeinsam mit dem Zuse-Institut Berlin ein leistungsstarkes Data & AI Center in der Hauptstadt aufbauen.

  • Perowskit-Forschung: Hybridmaterialien als hochempfindliche Röntgendetektoren
    Science Highlight
    08.05.2025
    Perowskit-Forschung: Hybridmaterialien als hochempfindliche Röntgendetektoren
    Neue organisch-anorganische Hybridmaterialien auf Basis von Wismut sind hervorragend als Röntgendetektoren geeignet, sie sind deutlich empfindlicher als handelsübliche Röntgendetektoren und langzeitstabil. Darüber hinaus können sie ohne Lösungsmittel durch Kugelmahlen hergestellt werden, einem umweltfreundlichen Syntheseverfahren, das auch in der Industrie genutzt wird. Empfindlichere Detektoren würden die Strahlenbelastung bei Röntgenuntersuchungen erheblich reduzieren.